login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272388
Longest side of Heronian tetrahedron.
1
117, 160, 203, 225, 234, 318, 319, 319, 320, 351, 406, 429, 450, 468, 468, 480, 585, 595, 595, 595, 609, 612, 636, 638, 638, 640, 671, 675, 680, 680, 697, 697, 702, 741, 780, 800, 812, 819, 858, 884, 884, 888, 900, 925, 935, 936, 936, 954, 957, 957, 960, 990, 990
OFFSET
1,1
COMMENTS
A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers.
LINKS
R. H. Buchholz, Perfect Pyramids, Bull. Austral. Math. Soc. 45, 353-368, 1992.
Susan H. Marshall and Alexander R. Perlis, Heronian Tetrahedra Are Lattice Tetrahedra, American Mathematical Monthly 120:2 (2013), 140-149.
Ivars Peterson, Perfect pyramids.
Eric Weisstein's World of Mathematics, Heronian Tetrahedron.
EXAMPLE
The following are examples of Heronian tetrahedra.
dAB, dAC, dBC, dCD, dBD, dAD, SABC, SABD, SACD, SBCD, Volume
117, 84, 51, 52, 53, 80, 1890, 1800, 2016, 1170, 18144
160, 153, 25, 39, 56, 120, 1872, 2688, 1404, 420, 8064
203, 195, 148, 203, 195, 148, 13650, 13650, 13650, 13650, 611520
225, 200, 65, 119, 156, 87, 6300, 4914, 2436, 3570, 35280
234, 168, 102, 104, 106, 160, 7560, 7200, 8064, 4680, 145152
318, 221, 203, 42, 175, 221, 22260, 18564, 4620, 2940, 206976
319, 318, 175, 175, 210, 221, 26796, 23100, 18564, 14700, 1034880
319, 318, 175, 203, 252, 221, 26796, 27720, 22260, 17640, 1241856
320, 306, 50, 78, 112, 240, 7488, 10752, 5616, 1680, 64512
351, 252, 153, 156, 159, 240, 17010, 16200, 18144, 10530, 489888
where
dPQ is the distance between vertices P and Q and
SPQR is the area of triangle PQR.
MATHEMATICA
aMax=360(*WARNING:takes a long time*);
heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&;
cayley=1/24Sqrt[2Det[{
{0, 1, 1, 1, 1},
{1, 0, #1^2, #2^2, #6^2},
{1, #1^2, 0, #3^2, #5^2},
{1, #2^2, #3^2, 0, #4^2},
{1, #6^2, #5^2, #4^2, 0}
}]]&;
Do[
S1=heron[a, b, c];
If[S1//IntegerQ//Not, Continue[]];
Do[
S2=heron[a, e, f];
If[S2//IntegerQ//Not, Continue[]];
Do[
If[b==e&&c>f||b==f&&c>e, Continue[]];
S3=heron[b, d, f];
If[S3//IntegerQ//Not, Continue[]];
S4=heron[c, d, e];
If[S4//IntegerQ//Not, Continue[]];
V=cayley[a, b, c, d, e, f];
If[V//IntegerQ//Not, Continue[]];
If[V==0, Continue[]];
a//Sow(*{a, b, c, d, e, f, S1, S2, S3, S4, V}//Sow*);
, {d, Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling, Min[a, Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}];
, {e, a-b+1, b}, {f, a-e+1, b}];
, {a, 117, aMax}, {b, a/2//Ceiling, a}, {c, a-b+1, b}]//Reap//Last//Last
CROSSREFS
KEYWORD
nonn
AUTHOR
Albert Lau, May 19 2016
EXTENSIONS
a(11)-a(53) from Giovanni Resta, May 20 2016
STATUS
approved