OFFSET
1,1
COMMENTS
This sequence is the k = 3 instance of the series which begins with k = 1, k = 2.
REFERENCES
W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 14-15, 1987.
J. Edalj, Problem 1622. L'Intermédiaire des Mathématiciens, 16, 34, 1909.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
J. Jonesco, Query 1622, L'Intermédiaire des Mathématiciens, 200, Tome VI, 1899.
Eric Weisstein's World of Mathematics, Almost Prime.
Eric Weisstein's World of Mathematics, Emirp.
Eric Weisstein and Jonathan Vos Post, Emirpimes.
EXAMPLE
1066 is in this sequence because 1066 = 2 * 13 * 41, making it a 3-almost prime and reverse(1066) = 6601 = 7 * 23 * 41, also a 3-almost prime.
2001 is in this sequence because 2001 = 3 * 23 * 29 and reverse(2001) = 1002 = 2 * 3 * 167.
MATHEMATICA
Select[Range[1000], PrimeOmega[#]==3&&PrimeOmega[FromDigits[Reverse[IntegerDigits[#]]]]==3&&!PalindromeQ[#]&] (* James C. McMahon, Mar 06 2024 *)
PROG
(PARI) is(n) = {
my(r = fromdigits(Vecrev(digits(n))));
n!=r && bigomega(n) == 3 && bigomega(r) == 3
} \\ David A. Corneth, Mar 07 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jonathan Vos Post, Jun 16 2005
EXTENSIONS
1002 replaced by 935 - R. J. Mathar, Dec 14 2009
STATUS
approved