|
|
A109027
|
|
Numbers that have exactly seven prime factors counted with multiplicity (A046308) whose digit reversal is different and also has 7 prime factors (with multiplicity).
|
|
10
|
|
|
8820, 21240, 21708, 21780, 21920, 23280, 23472, 23625, 23800, 25560, 25584, 25758, 26280, 27432, 27504, 27888, 27900, 28836, 29250, 29403, 29736, 29970, 30492, 34884, 36828, 40338, 40572, 40950, 41976, 42228, 42984, 43659, 43956, 44128
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is the k = 7 instance of the series which begins with k = 1 (emirps), k = 2, k = 3, k = 4, k = 5 (A109025), k = 6 (A109026).
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Emirp.
Eric Weisstein and Jonathan Vos Post, Emirpimes.
|
|
EXAMPLE
|
a(20) = 29403 is in this sequence because 29403 = 3^5 * 11^2 has exactly 7 prime factors counted with multiplicity and reverse(29403) = 30492 = 2^2 * 3^2 * 7 * 11^2 also has exactly 7 prime factors counted with multiplicity.
|
|
MATHEMATICA
|
Select[Range[45000], !PalindromeQ[#]&&PrimeOmega[#]==PrimeOmega[ IntegerReverse[ #]] ==7&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 02 2019 *)
|
|
PROG
|
(PARI) is(n) = {
my(r = fromdigits(Vecrev(digits(n))));
n!=r && bigomega(n) == 7 && bigomega(r) == 7
|
|
CROSSREFS
|
Cf. A046308, A006567, A097393, A109018, A109023, A109024, A109025, A109026, A109028, A109029, A109030, A109031.
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|