|
|
A097393
|
|
Emirpimes: numbers n such that n and its reversal are distinct semiprimes.
|
|
30
|
|
|
15, 26, 39, 49, 51, 58, 62, 85, 93, 94, 115, 122, 123, 129, 143, 155, 158, 159, 169, 177, 178, 183, 185, 187, 203, 205, 221, 226, 265, 289, 302, 314, 319, 321, 326, 327, 329, 335, 339, 341, 355, 381, 394, 398, 413, 415, 437, 493, 497, 502, 511, 514, 533
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Emirpimes
|
|
EXAMPLE
|
26 is a semiprime, as it is 2 * 13, and so is 62 = 2 * 31. 26 and 62 are therefore both in the sequence.
|
|
MAPLE
|
isA097393 := proc(n)
local R ;
R := digrev(n) ;
if R <> n then
if numtheory[bigomega](R) = 2 and numtheory[bigomega](n) = 2 then
return true;
else
false;
end if;
else
false;
end if;
end proc:
for n from 1 to 500 do
if isA097393(n) then
printf("%d, ", n) ;
end if;
|
|
MATHEMATICA
|
Select[Range[500], PrimeOmega[#] == 2 && PrimeOmega[FromDigits[Reverse[IntegerDigits[#]]]] == 2 &] (* Alonso del Arte, Oct 08 2012 *)
|
|
PROG
|
(PARI) rev(n)=subst(Polrev(digits(n)), 'x, 10)
issemi(n)=bigomega(n)==2
list(lim)=my(v=List(), r); forprime(p=2, lim\2, forprime(q=2, min(lim\p, p), r=rev(p*q); if(issemi(r)&&r!=p*q, listput(v, p*q)))); Set(v) \\ Charles R Greathouse IV, Jan 27 2015
(Python)
from sympy import factorint
from itertools import islice
def sp(n): f = factorint(n); return sum(f[p] for p in f) == 2
def ok(n): r = int(str(n)[::-1]); return r != n and sp(n) and sp(r)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|