|
|
A270609
|
|
Number of 4X4X4 triangular 0..n arrays with some element plus some adjacent element totalling n+1 or n-1 exactly once.
|
|
1
|
|
|
0, 0, 8808, 171576, 1728288, 13177740, 70129212, 309511644, 1134068490, 3559466436, 10133969880, 25490692140, 60750723804, 131276815188, 274807319832, 531982013820, 1009843336080, 1799168710884, 3165521551848
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Row 4 of A270606.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..58
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) +7*a(n-2) -16*a(n-3) -20*a(n-4) +56*a(n-5) +28*a(n-6) -112*a(n-7) -14*a(n-8) +140*a(n-9) -14*a(n-10) -112*a(n-11) +28*a(n-12) +56*a(n-13) -20*a(n-14) -16*a(n-15) +7*a(n-16) +2*a(n-17) -a(n-18) for n>33
Empirical for n mod 2 = 0: a(n) = 36*n^9 - 936*n^8 + 12600*n^7 - 110928*n^6 + 693084*n^5 - 3156192*n^4 + 10401756*n^3 - 23778456*n^2 + 34012980*n - 23053764 for n>15
Empirical for n mod 2 = 1: a(n) = 36*n^9 - 936*n^8 + 12816*n^7 - 117516*n^6 + 783468*n^5 - 3895902*n^4 + 14328570*n^3 - 37318686*n^2 + 62032434*n - 49736268 for n>15
|
|
EXAMPLE
|
Some solutions for n=4
.....0........0........1........2........0........0........0........2
....0.4......1.0......1.1......0.2......0.1......0.0......4.4......0.0
...0.2.2....2.0.4....4.0.1....0.0.2....1.1.0....4.0.1....4.2.4....2.4.4
..2.0.4.3..4.4.4.2..0.0.1.3..0.1.0.1..4.3.1.1..2.0.0.3..2.2.0.3..2.0.0.1
|
|
CROSSREFS
|
Cf. A270606.
Sequence in context: A031791 A179128 A206213 * A230335 A183752 A109027
Adjacent sequences: A270606 A270607 A270608 * A270610 A270611 A270612
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 20 2016
|
|
STATUS
|
approved
|
|
|
|