OFFSET
1,1
COMMENTS
Also called 7-almost primes. Products of exactly 7 primes (not necessarily distinct). - Jonathan Vos Post, Dec 11 2004
Also, positions of 7 in A001222. - Zak Seidov, Oct 14 2012
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Reference
FORMULA
Product p_i^e_i with sum e_i = 7.
a(n) ~ 720n log n / (log log n)^6. - Charles R Greathouse IV, May 06 2013
a(n) = A078840(7,n). - R. J. Mathar, Jan 30 2019
MATHEMATICA
Select[Range[900], Plus @@ Last /@ FactorInteger[ # ] == 7 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
PROG
(PARI) is(n)=bigomega(n)==7 \\ Charles R Greathouse IV, Mar 21 2013
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A046308(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 7)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Cf. A120048 (number of 7-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), this sequence (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
KEYWORD
nonn,changed
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved