login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069280
19-almost primes (generalization of semiprimes).
28
524288, 786432, 1179648, 1310720, 1769472, 1835008, 1966080, 2654208, 2752512, 2883584, 2949120, 3276800, 3407872, 3981312, 4128768, 4325376, 4423680, 4456448, 4587520, 4915200, 4980736, 5111808, 5971968, 6029312, 6193152
OFFSET
1,1
COMMENTS
Product of 19 not necessarily distinct primes.
Divisible by exactly 19 prime powers (not including 1).
LINKS
Eric Weisstein's World of Mathematics, Almost Prime.
FORMULA
Product p_i^e_i with Sum e_i = 19.
PROG
(PARI) k=19; start=2^k; finish=8000000; v=[]; for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A069280(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 19)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), this sequence (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Sequence in context: A069394 A289480 A222530 * A017702 A010807 A236227
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Mar 13 2002
STATUS
approved