login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222530
O.g.f.: Sum_{n>=1} (n^10)^n * exp(-n^10*x) * x^n / n!.
5
1, 1, 524287, 34314651811530, 50369882873307917364901, 740095864368253016271188139587625, 67872880319721869662486234870635119906757244, 28468832412072117193931250482560479429446507352468258480, 43812568949824405485262661429905291482204531455805230631187460302069
OFFSET
0,3
COMMENTS
Generally, for p>=2 is StirlingS2(p*n,n) asymptotic to n^((p-1)*n) * p^(p*n) / (sqrt(2*Pi*(1-c)*n) * exp((p-1)*n) * (p-c)^((p-1)*n) * c^n), where c = -LambertW(-p*exp(-p)). - Vaclav Kotesovec, May 11 2014
LINKS
FORMULA
a(n) = Stirling2(10*n, n).
a(n) = [x^(10*n)] (10*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(9*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^10)^k*x^k / (1 + k^10*x)^(k+1).
a(n) ~ n^(9*n) * 10^(10*n) / (sqrt(2*Pi*(1-c)*n) * exp(9*n) * (10-c)^(9*n) * c^n), where c = -LambertW(-10*exp(-10)). - Vaclav Kotesovec, May 11 2014
EXAMPLE
O.g.f.: A(x) = 1 + x + 524287*x^2 + 34314651811530*x^3 + 50369882873307917364901*x^4 +...+ Stirling2(10*n, n)*x^n +...
where
A(x) = 1 + 1^10*x*exp(-1^10*x) + 2^20*exp(-2^10*x)*x^2/2! + 3^30*exp(-3^10*x)*x^3/3! + 4^40*exp(-4^10*x)*x^4/4! + 5^50*exp(-5^10*x)*x^5/5! +...
is a power series in x with integer coefficients.
MATHEMATICA
Table[StirlingS2[10*n, n], {n, 0, 20}] (* Vaclav Kotesovec, May 11 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(k=0, n, (k^10)^k*exp(-k^10*x +x*O(x^n))*x^k/k!), n)}
(PARI) {a(n)=1/n!*polcoeff(sum(k=0, n, (k^1)^k*x^k/(1+k^10*x +x*O(x^n))^(k+1)), n)}
(PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(9*n))), 9*n)}
(PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(10*n, n)}
for(n=0, 12, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 23 2013
STATUS
approved