

A069275


14almost primes (generalization of semiprimes).


29



16384, 24576, 36864, 40960, 55296, 57344, 61440, 82944, 86016, 90112, 92160, 102400, 106496, 124416, 129024, 135168, 138240, 139264, 143360, 153600, 155648, 159744, 186624, 188416, 193536, 200704, 202752, 207360, 208896, 215040, 225280
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Product of 14 not necessarily distinct primes.
Divisible by exactly 14 prime powers (not including 1).
Any 14almost prime can be represented in several ways as a product of two 7almost primes A046308; and in several ways as a product of seven semiprimes A001358.  Jonathan Vos Post, Dec 11 2004


LINKS



FORMULA

Product p_i^e_i with Sum e_i = 14.


MATHEMATICA



PROG

(PARI) k=14; start=2^k; finish=240000; v=[] for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v


CROSSREFS

Sequences listing ralmost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), this sequence(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).  Jason Kimberley, Oct 02 2011


KEYWORD

nonn


AUTHOR



STATUS

approved



