login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101638
Number of distinct 4-almost primes A014613 which are factors of n.
15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
OFFSET
1,48
COMMENTS
This is the inverse Moebius transform of A101637. If we take the prime factorization of n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=4}| + ((j-1)/2)*|{k: ek>=3}| + C(|{k: ek>=2}|,2) + C(j,4). The first term is the number of distinct 4th powers of primes in the factors of n (the first way of finding a 4-almost prime). The second term is the number of distinct cubes of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 4-almost prime). The third term is the number of distinct pairs of squares of primes in the factors of n (the third way of finding a 4-almost prime). The 4th term is the number of distinct products of 4 distinct primes, which is the number of combinations of j primes in the factors of n taken 4 at a time, A000332(j), (the 4th way of finding a 4-almost prime).
REFERENCES
Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
E. A. Bender and J. R. Goldman, On the Applications of Moebius Inversion in Combinatorial Analysis, Amer. Math. Monthly 82, 789-803, 1975.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Eric Weisstein's World of Mathematics, Almost Prime.
Eric Weisstein's World of Mathematics, Moebius Transform..
EXAMPLE
a(96) = 2 because 96 = 16 * 6 hence divisible by the 4-almost prime 16 and also 96 = 24 * 4 hence divisible by the 4-almost prime 24.
PROG
(PARI) a(n)=my(f=factor(n)[, 2], v=apply(k->sum(i=1, #f, f[i]>k), [0..3])); v[4] + v[3]*(v[1]-1) + binomial(v[2], 2) + v[2]*binomial(v[1]-1, 2) + binomial(v[1], 4) \\ Charles R Greathouse IV, Sep 14 2015
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 10 2004
STATUS
approved