login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101636
a(n) = least odd prime p such that (p^(P(n))-1)/(p-1) is prime with P(i) = i-th prime, n>1.
1
3, 7, 3, 5, 3, 11, 11, 113, 151, 19, 61, 53, 89, 5, 307, 19, 19, 491, 3, 11, 271, 41, 251, 271, 359, 3, 19, 79, 233, 5, 7, 13, 11, 5, 29, 71, 139, 127, 139, 2003, 5, 743, 673, 593, 383, 653, 661, 251, 6389, 2833, 223, 163, 37, 709, 131, 41, 2203, 941, 2707, 13, 1283
OFFSET
2,1
COMMENTS
All primes certified using PRIMO.
EXAMPLE
(3^3-1)/2=26/2=13 prime so for P(2) a(2)=3.
MATHEMATICA
a = {}; Do[ p1 = Prime[n]; k = 2; While[p2 = Prime[k]; ! PrimeQ[(p2^p1 - 1)/(p2 - 1)], k++ ]; AppendTo[a, p2]; , {n, 2, 62}]; a (* Ray Chandler, Jan 27 2005 *)
f[n_] := Block[{P = Prime[n], k = 2}, While[p = Prime[k]; !PrimeQ[(p^P - 1)/(p - 1)], k++ ]; Prime[ k]]; Table[ f[n], {n, 2, 62}] (* Robert G. Wilson v, Jan 27 2005 *)
PROG
(PARI) a(n) = my(p=3, q=prime(n)); while (!ispseudoprime((p^q-1)/(p-1)), p=nextprime(p+1)); p; \\ Michel Marcus, Mar 21 2023
CROSSREFS
Sequence in context: A132821 A247217 A252734 * A193534 A096247 A337013
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jan 26 2005
EXTENSIONS
Extended by Ray Chandler and Robert G. Wilson v, Jan 27 2005
STATUS
approved