login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = least odd prime p such that (p^(P(n))-1)/(p-1) is prime with P(i) = i-th prime, n>1.
1

%I #14 Mar 21 2023 08:26:45

%S 3,7,3,5,3,11,11,113,151,19,61,53,89,5,307,19,19,491,3,11,271,41,251,

%T 271,359,3,19,79,233,5,7,13,11,5,29,71,139,127,139,2003,5,743,673,593,

%U 383,653,661,251,6389,2833,223,163,37,709,131,41,2203,941,2707,13,1283

%N a(n) = least odd prime p such that (p^(P(n))-1)/(p-1) is prime with P(i) = i-th prime, n>1.

%C All primes certified using PRIMO.

%e (3^3-1)/2=26/2=13 prime so for P(2) a(2)=3.

%t a = {}; Do[ p1 = Prime[n]; k = 2; While[p2 = Prime[k]; ! PrimeQ[(p2^p1 - 1)/(p2 - 1)], k++ ]; AppendTo[a, p2];, {n, 2, 62}]; a (* _Ray Chandler_, Jan 27 2005 *)

%t f[n_] := Block[{P = Prime[n], k = 2}, While[p = Prime[k]; !PrimeQ[(p^P - 1)/(p - 1)], k++ ]; Prime[ k]]; Table[ f[n], {n, 2, 62}] (* _Robert G. Wilson v_, Jan 27 2005 *)

%o (PARI) a(n) = my(p=3, q=prime(n)); while (!ispseudoprime((p^q-1)/(p-1)), p=nextprime(p+1)); p; \\ _Michel Marcus_, Mar 21 2023

%K nonn

%O 2,1

%A _Pierre CAMI_, Jan 26 2005

%E Extended by _Ray Chandler_ and _Robert G. Wilson v_, Jan 27 2005