login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247217
Decimal expansion of theta_3(0, exp(-2*Pi)), where theta_3 is the 3rd Jacobi theta function.
8
1, 0, 0, 3, 7, 3, 4, 8, 8, 5, 4, 8, 7, 7, 3, 9, 0, 9, 1, 0, 4, 7, 6, 7, 9, 5, 9, 5, 0, 6, 6, 9, 5, 3, 8, 6, 6, 2, 0, 7, 9, 9, 4, 3, 3, 2, 4, 4, 4, 5, 1, 9, 4, 0, 8, 2, 5, 4, 9, 5, 8, 1, 5, 3, 2, 4, 7, 3, 2, 5, 1, 7, 3, 3, 2, 9, 5, 6, 3, 7, 9, 8, 0, 5, 6, 9, 4, 9, 8, 3, 2, 1, 6, 6, 4, 4, 4, 2, 3, 5, 2, 7
OFFSET
1,4
LINKS
Eric Weisstein's MathWorld, Jacobi Theta Functions
Wikipedia, Theta function
FORMULA
Equals (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*Gamma(3/4)).
Equals Sum_{n=-infinity..infinity} exp(-2*Pi*n^2).
EXAMPLE
1.0037348854877390910476795950669538662079943324445194...
MATHEMATICA
RealDigits[(4*Pi*Sqrt[2] + 6*Pi)^(1/4)/(2*Gamma[3/4]), 10, 102] // First
PROG
(PARI) (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*gamma(3/4)) \\ Michel Marcus, Nov 26 2014
(Magma) C<i> := ComplexField(); (4*Pi(C)*Sqrt(2) + 6*Pi(C))^(1/4)/(2*Gamma(3/4)); // G. C. Greubel, Jan 07 2018
CROSSREFS
Cf. A000122, A175573 (theta_3(0, exp(-Pi))), A273081, A273082, A273083, A273084.
Sequence in context: A195769 A021968 A132821 * A252734 A101636 A193534
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved