login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247219
Positive numbers m such that m^2 - 1 divides 2^m - 1.
7
2, 4, 16, 36, 256, 456, 1296, 2556, 4356, 6480, 8008, 11952, 26320, 44100, 47520, 47880, 49680, 57240, 65536, 74448, 84420, 97812, 141156, 157080, 165600, 225456, 278496, 310590, 333432, 365940, 403900, 419710, 476736, 557040, 560736, 576720, 647088, 1011960, 1033056, 1204560, 1206180
OFFSET
1,1
COMMENTS
Contains all numbers of the form m = A001146(k) = 2^2^k, k >= 0; and those with k > 1 seem to form the intersection with A247165. - M. F. Hasler, Jul 25 2015
LINKS
EXAMPLE
2 is in this sequence because 2^2 - 1 = 3 divides 2^2 - 1 = 3.
MATHEMATICA
Select[Range[10^4], Divisible[2^# - 1, #^2 - 1] &] (* Alonso del Arte, Nov 26 2014 *)
Select[Range[2, 121*10^4], PowerMod[2, #, #^2-1]==1&] (* Harvey P. Dale, Sep 08 2021 *)
PROG
(Magma) [n: n in [2..122222] | Denominator((2^n - 1)/(n^2 - 1)) eq 1];
(PARI) isok(n) = ((2^n - 1) % (n^2 - 1)) == 0; \\ Michel Marcus, Nov 26 2014
(Python)
from gmpy2 import powmod
A247219_list = [n for n in range(2, 10**7) if powmod(2, n, n*n-1) == 1]
# Chai Wah Wu, Dec 03 2014
(PARI) forstep(n=0, 1e8, 2, Mod(2, n^2-1)^n-1 || print1(n", ")) \\ M. F. Hasler, Jul 25 2015
CROSSREFS
Cf. A081762.
Sequence in context: A087965 A074411 A189838 * A265835 A185074 A379525
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected a(24) by Chai Wah Wu, Dec 03 2014
STATUS
approved