|
|
A247221
|
|
Numbers n such that 2*n^2 + 1 divides 2^n + 1.
|
|
2
|
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numbers n such that (2^n + 1)/(2*n^2 + 1) is an integer.
|
|
LINKS
|
|
|
EXAMPLE
|
0 is in this sequence because 2^0 + 1 = 2 divides 2*0^2 + 1 = 1,
1 is in this sequence because 2^1 + 1 = 3 divides 2*1^2 + 1 = 3.
|
|
MATHEMATICA
|
a247221[n_Integer] := Select[Range[n], Divisible[2^# + 1, 2*#^2 + 1] &]; a247221[2500000] (* Michael De Vlieger, Nov 30 2014 *)
|
|
PROG
|
(Magma) [n: n in [1..300000] | Denominator((2^n+1)/(2*n^2+1)) eq 1];
(PARI) for(n=0, 10^9, if(Mod(2, 2*n^2+1)^n==-1, print1(n, ", "))); \\ Joerg Arndt, Nov 30 2014
(Python)
A247221_list = [n for n in range(10**6) if pow(2, n, 2*n*n+1) == 2*n*n]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|