login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers m such that m^2 - 1 divides 2^m - 1.
7

%I #34 Jun 27 2024 22:21:45

%S 2,4,16,36,256,456,1296,2556,4356,6480,8008,11952,26320,44100,47520,

%T 47880,49680,57240,65536,74448,84420,97812,141156,157080,165600,

%U 225456,278496,310590,333432,365940,403900,419710,476736,557040,560736,576720,647088,1011960,1033056,1204560,1206180

%N Positive numbers m such that m^2 - 1 divides 2^m - 1.

%C Contains all numbers of the form m = A001146(k) = 2^2^k, k >= 0; and those with k > 1 seem to form the intersection with A247165. - _M. F. Hasler_, Jul 25 2015

%H Chai Wah Wu, <a href="/A247219/b247219.txt">Table of n, a(n) for n = 1..105</a>

%e 2 is in this sequence because 2^2 - 1 = 3 divides 2^2 - 1 = 3.

%t Select[Range[10^4], Divisible[2^# - 1, #^2 - 1] &] (* _Alonso del Arte_, Nov 26 2014 *)

%t Select[Range[2,121*10^4],PowerMod[2,#,#^2-1]==1&] (* _Harvey P. Dale_, Sep 08 2021 *)

%o (Magma) [n: n in [2..122222] | Denominator((2^n - 1)/(n^2 - 1)) eq 1];

%o (PARI) isok(n) = ((2^n - 1) % (n^2 - 1)) == 0; \\ _Michel Marcus_, Nov 26 2014

%o (Python)

%o from gmpy2 import powmod

%o A247219_list = [n for n in range(2,10**7) if powmod(2,n,n*n-1) == 1]

%o # _Chai Wah Wu_, Dec 03 2014

%o (PARI) forstep(n=0,1e8,2, Mod(2,n^2-1)^n-1 || print1(n", ")) \\ _M. F. Hasler_, Jul 25 2015

%Y Cf. A081762.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Nov 26 2014

%E Corrected a(24) by _Chai Wah Wu_, Dec 03 2014