OFFSET
1,7
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Wikipedia, Theta function
FORMULA
Equals (2 + 2^(3/4))/4 * Pi^(1/4) / Gamma(3/4).
Equals (1 + 2^(1/4)) * Gamma(1/4) / (2^(7/4)*Pi^(3/4)).
EXAMPLE
1.00000697468471241799127935745572277338608481181934395967...
MAPLE
evalf((2+2^(3/4))/4*Pi^(1/4)/GAMMA(3/4), 120);
evalf((1 + 2^(1/4)) * GAMMA(1/4) / (2^(7/4)*Pi^(3/4)), 120);
MATHEMATICA
RealDigits[EllipticTheta[3, 0, Exp[-4*Pi]], 10, 105][[1]]
RealDigits[(2 + 2^(3/4))/4 * Pi^(1/4) / Gamma[3/4], 10, 105][[1]]
RealDigits[(1 + 2^(1/4)) * Gamma[1/4] / (2^(7/4)*Pi^(3/4)), 10, 105][[1]]
PROG
(PARI) (2^.25+1)*gamma(1/4)/sqrtn(128*Pi^3, 4) \\ Charles R Greathouse IV, Jun 06 2016
(Magma) C<i> := ComplexField(); ((2+2^(3/4))/4)*Pi(C)^(1/4)/Gamma(3/4) // G. C. Greubel, Jan 07 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 14 2016
STATUS
approved