login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175573 Decimal expansion of Pi^(1/4)/Gamma(3/4). 12
1, 0, 8, 6, 4, 3, 4, 8, 1, 1, 2, 1, 3, 3, 0, 8, 0, 1, 4, 5, 7, 5, 3, 1, 6, 1, 2, 1, 5, 1, 0, 2, 2, 3, 4, 5, 7, 0, 7, 0, 2, 0, 5, 7, 0, 7, 2, 4, 5, 2, 1, 8, 8, 8, 5, 9, 2, 0, 7, 9, 0, 3, 1, 5, 9, 8, 1, 8, 5, 6, 7, 3, 2, 2, 6, 7, 1, 0, 9, 7, 9, 5, 9, 6, 0, 5, 6, 1, 6, 1, 8, 4, 8, 9, 6, 7, 9, 7, 6, 4, 0, 3, 7, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Entry 34 a of chapter 11 of Ramanujan's second notebook. Entry 34 b is A085565.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

Bruce C. Berndt, Chapter 11 of Ramanujan's second notebook, Bull. Lond. Math. Soc. vol 15 no 4 (1983) 273-320.

Wikipedia, Theta function

FORMULA

Equals A092040 / A068465.

Also equals Sum_{n=-infinity..infinity} exp(-Pi*n^2), or also EllipticTheta(3, 0, exp(-Pi)). - Jean-François Alcover, Jul 04 2013

EXAMPLE

1.0864348112133080145753161...

MAPLE

Pi^(1/4)/GAMMA(3/4) ; evalf(%) ;

MATHEMATICA

RealDigits[ Pi^(1/4)/Gamma[3/4], 10, 105][[1]] (* Jean-François Alcover, Jul 04 2013 *)

PROG

(PARI) Pi^(1/4)/gamma(3/4) \\ G. C. Greubel, Nov 05 2017

(PARI) 2*suminf(k=0, exp(-Pi)^(k^2))-1 \\ Hugo Pfoertner, Sep 17 2018

(MAGMA) C<i> := ComplexField(); [(Pi(C))^(1/4)/Gamma(3/4)]; // G. C. Greubel, Nov 05 2017

CROSSREFS

Cf. A247217, A273081, A273082, A273083, A273084.

Sequence in context: A059631 A333198 A093019 * A296494 A261027 A296041

Adjacent sequences:  A175570 A175571 A175572 * A175574 A175575 A175576

KEYWORD

cons,easy,nonn

AUTHOR

R. J. Mathar, Jul 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 00:04 EDT 2021. Contains 343609 sequences. (Running on oeis4.)