login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175573
Decimal expansion of Pi^(1/4)/Gamma(3/4).
13
1, 0, 8, 6, 4, 3, 4, 8, 1, 1, 2, 1, 3, 3, 0, 8, 0, 1, 4, 5, 7, 5, 3, 1, 6, 1, 2, 1, 5, 1, 0, 2, 2, 3, 4, 5, 7, 0, 7, 0, 2, 0, 5, 7, 0, 7, 2, 4, 5, 2, 1, 8, 8, 8, 5, 9, 2, 0, 7, 9, 0, 3, 1, 5, 9, 8, 1, 8, 5, 6, 7, 3, 2, 2, 6, 7, 1, 0, 9, 7, 9, 5, 9, 6, 0, 5, 6, 1, 6, 1, 8, 4, 8, 9, 6, 7, 9, 7, 6, 4, 0, 3, 7, 4, 1
OFFSET
1,3
COMMENTS
Entry 34 a of chapter 11 of Ramanujan's second notebook. Entry 34 b is A085565.
LINKS
Bruce C. Berndt, Chapter 11 of Ramanujan's second notebook, Bull. Lond. Math. Soc., Vol. 15, No. 4 (1983), 273-320.
Wikipedia, Theta function.
FORMULA
Equals A092040 / A068465.
Equals Sum_{n=-oo..oo} exp(-Pi*n^2), or also EllipticTheta(3, 0, exp(-Pi)). - Jean-François Alcover, Jul 04 2013
Equals sqrt(A175574). - Amiram Eldar, Jul 04 2023
Equals Gamma(1/4)/(sqrt(2)*Pi^(3/4)). - Vaclav Kotesovec, Jul 04 2023
Equals Product_{k>=1} tanh((1/2 + i/2)*Pi*k), i=sqrt(-1). - _Antonio Graciá Llorente, Mar 20 2024
Equals Product_{k>=0} (1/2)*(((k+1/2)/(k+1))^(1/2)+((k+1)/(k+1/2))^(1/2)). - Antonio Graciá Llorente, Jul 23 2024
EXAMPLE
1.0864348112133080145753161...
MAPLE
Pi^(1/4)/GAMMA(3/4) ; evalf(%) ;
MATHEMATICA
RealDigits[ Pi^(1/4)/Gamma[3/4], 10, 105][[1]] (* Jean-François Alcover, Jul 04 2013 *)
PROG
(PARI) Pi^(1/4)/gamma(3/4) \\ G. C. Greubel, Nov 05 2017
(PARI) 2*suminf(k=0, exp(-Pi)^(k^2))-1 \\ Hugo Pfoertner, Sep 17 2018
(Magma) C<i> := ComplexField(); [(Pi(C))^(1/4)/Gamma(3/4)]; // G. C. Greubel, Nov 05 2017
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 15 2010
STATUS
approved