login
A175575
Decimal expansion of (Gamma(3/4))^2 / Pi^(3/2) .
2
2, 6, 9, 6, 7, 6, 3, 0, 0, 5, 9, 4, 1, 8, 9, 6, 7, 8, 3, 3, 3, 9, 6, 7, 8, 6, 1, 1, 7, 7, 7, 7, 6, 3, 6, 6, 3, 8, 2, 9, 3, 4, 4, 8, 2, 7, 2, 1, 5, 2, 0, 0, 6, 5, 1, 6, 9, 9, 7, 3, 3, 1, 5, 9, 3, 1, 9, 4, 1, 4, 9, 4, 2, 4, 3, 2, 5, 7, 8, 4, 1, 4, 0, 7, 7, 9, 6, 0, 6, 8, 6, 1, 3, 7, 6, 6, 8, 8, 5, 7, 3, 6, 2, 8, 2
OFFSET
0,1
COMMENTS
Entry 34 d of chapter 11 of Ramanujan's second notebook.
LINKS
Bruce C. Berndt, Chapter 11 of Ramanujan's second notebook, Bull. Lond. Math. Soc. vol 15 no 4 (1983) 273-320.
FORMULA
Equals A068465^2 / (A000796 * A002161 ) = 1/A175576.
Equals (5/16)*hypergeom([1/4, -3/4], [3/2], 1). - Peter Bala, Mar 02 2022
EXAMPLE
0.2696763005941896783339678...
MAPLE
GAMMA(3/4)^2/Pi^(3/2) ; evalf(%) ;
MATHEMATICA
RealDigits[Gamma[3/4]^2/Pi^(3/2), 10, 120][[1]] (* Harvey P. Dale, Mar 16 2021 *)
CROSSREFS
Sequence in context: A360957 A155678 A134946 * A242433 A011046 A246828
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 15 2010
STATUS
approved