login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242433
Decimal expansion of one of the Pell-Stevenhagen constants.
0
2, 6, 9, 7, 3, 1, 8, 4, 6, 1, 9, 6, 9, 6, 3, 3, 7, 7, 3, 8, 2, 1, 2, 7, 1, 0, 6, 7, 4, 8, 9, 1, 0, 8, 1, 9, 1, 9, 4, 4, 7, 4, 4, 4, 6, 3, 5, 4, 0, 4, 4, 6, 4, 2, 4, 8, 1, 8, 1, 7, 6, 7, 0, 0, 1, 7, 2, 5, 8, 5, 6, 9, 1, 1, 3, 0, 9, 7, 5, 9, 0, 5, 4, 9, 5, 1, 2, 0, 7, 2, 5, 2, 0, 0, 4, 7, 7, 3, 9, 9
OFFSET
0,1
COMMENTS
P. Stevenhagen conjectured that the asymptotic counting function of the squarefree integers for which the negative Pell equation x^2 - n*y^2 = -1 has an integer solution, was f(n) ~ (6/Pi^2)*P*K*n/sqrt(log(n)).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 119.
LINKS
Eric Weisstein's MathWorld, Landau-Ramanujan Constant
Eric Weisstein's MathWorld, Pell Constant
FORMULA
(6/Pi^2)*P*K where P is the Pell constant 0.5805775582... and K the Landau-Ramanujan constant 0.7642236535...
EXAMPLE
0.26973184619696337738212710674891...
MATHEMATICA
(* After Victor Adamchik *) LandauRamanujan[n_] := With[{K = Ceiling[Log[2, n*Log[3, 10]]]}, N[Product[(((1 - 2^(-2^k))*4^2^k*Zeta[2^k])/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^2^(-k - 1), {k, 1, K}]/Sqrt[2], n]]; K = LandauRamanujan[100]; P = 1 - QPochhammer[1/2, 1/4]; RealDigits[6/Pi^2*P*K, 10, 100] // First
CROSSREFS
Sequence in context: A155678 A134946 A175575 * A011046 A246828 A136701
KEYWORD
nonn,cons
AUTHOR
STATUS
approved