login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242431
Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n.
3
1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 43, 35, 17, 5, 1, 144, 128, 74, 26, 6, 1, 523, 491, 329, 137, 37, 7, 1, 2048, 1984, 1498, 730, 230, 50, 8, 1, 8597, 8469, 7011, 3939, 1439, 359, 65, 9, 1, 38486, 38230, 33856, 21568, 9068, 2588, 530, 82, 10, 1
OFFSET
0,2
FORMULA
T(n, 0) = A047970(n).
Sum_{k=0..n} T(n, k) = A112532(n+1).
From Mathew Englander, Feb 25 2021: (Start)
T(n,k) = 1 + Sum_{i = k+1..n} i*(i+1)^(n-i).
T(n,k) = T(n,k+1) + (k+1)*(k+2)^(n-k-1) for 0 <= k < n.
T(n,k) = T(n,k+1) + (k+2)*(T(n-1,k) - T(n-1,k+1)) for 0 <= k <= n-2.
T(n,k) = Sum_{i = 0..n-k} (k+2)^i*A089246(n-k,i).
Sum_{i = k..n} T(i,k) = Sum_{i = 0..n-k} (n+2-i)^i = Sum_{i = 0..n-k} A101494(n-k,i)*(k+2)^i. (End)
EXAMPLE
0| 1;
1| 2, 1;
2| 5, 3, 1;
3| 14, 10, 4, 1;
4| 43, 35, 17, 5, 1;
5| 144, 128, 74, 26, 6, 1;
6| 523, 491, 329, 137, 37, 7, 1;
7| 2048, 1984, 1498, 730, 230, 50, 8, 1;
MAPLE
T := proc(n, k) option remember; local j;
if k=n then 1
elif k>n then 0
else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
fi end:
seq(print(seq(T(n, k), k=0..n)), n=0..7);
PROG
(Sage)
def A242431_rows():
T = []; n = 0
while True:
T.append(1)
yield T
for k in (0..n):
T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
n += 1
a = A242431_rows()
for n in range(8): next(a)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 14 2014
STATUS
approved