The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242434 Number of compositions of n in which each part p has multiplicity p. 3
 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 10, 60, 0, 1, 5, 0, 0, 15, 105, 0, 0, 0, 36, 286, 0, 0, 1281, 12768, 0, 0, 0, 56, 504, 1, 7, 2520, 27720, 28, 378, 1260, 0, 0, 7014, 84000, 0, 0, 4621, 83168, 360360, 210, 2346, 2522880, 37837800, 13860, 180180, 120, 1320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..4500 EXAMPLE a(0) = 1: the empty composition. a(1) = 1: [1]. a(4) = 1: [2,2]. a(5) = 3: [1,2,2], [2,1,2], [2,2,1]. a(9) = 1: [3,3,3]. a(10) = 4: [1,3,3,3], [3,1,3,3], [3,3,1,3], [3,3,3,1]. a(13) = 10: [2,2,3,3,3], [2,3,2,3,3], [2,3,3,2,3], [2,3,3,3,2], [3,2,2,3,3], [3,2,3,2,3], [3,2,3,3,2], [3,3,2,2,3], [3,3,2,3,2], [3,3,3,2,2]. MAPLE b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,        b(n, i-1, p) +`if`(i^2>n, 0, b(n-i^2, i-1, p+i)/i!)))     end: a:= n-> b(n, isqrt(n), 0): seq(a(n), n=0..100); MATHEMATICA b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, b[n, i-1, p] + If[i^2 >n, 0, b[n-i^2, i-1, p+i]/i!]]]; a[n_] := b[n, Floor[Sqrt[n]], 0]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *) CROSSREFS Cf. A033461 (the same for partitions), A336269. Sequence in context: A328969 A027185 A035641 * A036873 A081130 A174428 Adjacent sequences:  A242431 A242432 A242433 * A242435 A242436 A242437 KEYWORD nonn,look AUTHOR Alois P. Heinz, May 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 11:11 EDT 2020. Contains 337317 sequences. (Running on oeis4.)