login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242434
Number of compositions of n in which each part p has multiplicity p.
3
1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 10, 60, 0, 1, 5, 0, 0, 15, 105, 0, 0, 0, 36, 286, 0, 0, 1281, 12768, 0, 0, 0, 56, 504, 1, 7, 2520, 27720, 28, 378, 1260, 0, 0, 7014, 84000, 0, 0, 4621, 83168, 360360, 210, 2346, 2522880, 37837800, 13860, 180180, 120, 1320
OFFSET
0,6
COMMENTS
a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}.
LINKS
EXAMPLE
a(0) = 1: the empty composition.
a(1) = 1: [1].
a(4) = 1: [2,2].
a(5) = 3: [1,2,2], [2,1,2], [2,2,1].
a(9) = 1: [3,3,3].
a(10) = 4: [1,3,3,3], [3,1,3,3], [3,3,1,3], [3,3,3,1].
a(13) = 10: [2,2,3,3,3], [2,3,2,3,3], [2,3,3,2,3], [2,3,3,3,2], [3,2,2,3,3], [3,2,3,2,3], [3,2,3,3,2], [3,3,2,2,3], [3,3,2,3,2], [3,3,3,2,2].
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
b(n, i-1, p) +`if`(i^2>n, 0, b(n-i^2, i-1, p+i)/i!)))
end:
a:= n-> b(n, isqrt(n), 0):
seq(a(n), n=0..100);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, b[n, i-1, p] + If[i^2 >n, 0, b[n-i^2, i-1, p+i]/i!]]]; a[n_] := b[n, Floor[Sqrt[n]], 0]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
CROSSREFS
Cf. A033461 (the same for partitions), A336269.
Sequence in context: A328969 A027185 A035641 * A036873 A081130 A358623
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, May 14 2014
STATUS
approved