login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A336269
Number of compositions of n containing no part p of multiplicity p.
4
1, 0, 2, 2, 5, 11, 18, 36, 84, 155, 305, 625, 1269, 2487, 5070, 10263, 20964, 41905, 84799, 170540, 346192, 696157, 1405156, 2822998, 5686402, 11420892, 22949684, 46028648, 92347798, 185051670, 370756866, 742307736, 1485798060, 2972924906, 5947567564
OFFSET
0,3
LINKS
FORMULA
a(n) = A011782(n) - A336273(n).
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(`if`(i=j, 0, b(n-i*j, i-1, p+j)/j!), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0,
Sum[If[i == j, 0, b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 15 2020
STATUS
approved