login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336270
a(n) = Sum_{k=0..n} Sum_{j=0..k} (binomial(n,k) * binomial(k,j))^n.
4
1, 3, 15, 381, 67635, 83118753, 813824623689, 58040410068847251, 32150480245981639533315, 154935057570894645075940703673, 5474671509704049919709361235659936825, 1600436120524545216094358662984789029130593831
OFFSET
0,2
LINKS
FORMULA
a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^3.
MATHEMATICA
Table[Sum[Sum[(Binomial[n, k] Binomial[k, j])^n, {j, 0, k}], {k, 0, n}], {n, 0, 11}]
Table[(n!)^n SeriesCoefficient[Sum[x^k/(k!)^n, {k, 0, n}]^3, {x, 0, n}], {n, 0, 11}]
PROG
(PARI) a(n) = sum(k=0, n, sum(j=0, k, (binomial(n, k) * binomial(k, j))^n)); \\ Michel Marcus, Jul 16 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 15 2020
STATUS
approved