login
A104080
Smallest prime >= 2^n.
34
2, 2, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
OFFSET
0,1
LINKS
FORMULA
a(n) = A014210(n), n <> 1. - R. J. Mathar, Oct 14 2008
Sum_{n >= 0} 1/a(n) = A338475 + 1/6 = 1.4070738... (because 1/6 = 1/2 - 1/3). - Bernard Schott, Nov 01 2020
From Gus Wiseman, Jun 03 2024: (Start)
a(n) = A007918(2^n).
a(n) = 2^n + A092131(n).
a(n) = prime(A372684(n)).
(End)
MATHEMATICA
Join[{2, 2}, NextPrime[#]&/@(2^Range[2, 40])] (* Harvey P. Dale, Jan 26 2011 *)
NextPrime[2^Range[0, 50]-1] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
PROG
(PARI) g(n, b=2) = for(x=0, n, print1(nextprime(b^x)", "))
(PARI) a(n) = nextprime(2^n); \\ Michel Marcus, Nov 01 2020
CROSSREFS
Except initial terms and offset, same as A014210 and A203074.
The opposite (greatest prime <= 2^n) is A014234, indices A007053.
The distance from 2^n is A092131, opposite A013603.
Counting zeros instead of both bits gives A372474, cf. A035103, A211997.
Counting ones instead of both bits gives A372517, cf. A014499, A061712.
For squarefree instead of prime we have A372683, cf. A143658, A372540.
The indices of these prime are given by A372684.
Sequence in context: A208864 A259828 A366094 * A375317 A336269 A078405
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 03 2005
STATUS
approved