The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014499 Number of 1's in binary representation of n-th prime. 76
 1, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 3, 3, 4, 5, 4, 5, 5, 3, 4, 3, 5, 4, 4, 3, 4, 5, 5, 5, 4, 7, 3, 3, 4, 4, 5, 5, 4, 5, 5, 5, 5, 7, 3, 4, 5, 5, 7, 5, 5, 5, 7, 5, 7, 2, 4, 4, 5, 4, 4, 5, 4, 5, 6, 5, 6, 5, 4, 6, 6, 4, 6, 7, 6, 7, 8, 4, 5, 4, 5, 5, 5, 7, 5, 7, 7, 4, 5, 6, 7, 6, 8, 7, 7, 7, 8, 8, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the rank of prime(n) in the base-2 dominance order on the natural numbers. - Tom Edgar, Mar 25 2014 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013. Christian Elsholtz, Almost all primes have a multiple of small Hamming weight, arXiv:1602.05974 [math.NT], 2016. Index entries for sequences related to binary expansion of n FORMULA a(n) = A000120(A000040(n)). a(A049084(A061712(n))) = n. - Reinhard Zumkeller, Feb 10 2013 a(n) = [x^prime(n)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018 EXAMPLE From M. F. Hasler, Mar 03 2023: (Start) a(n) = 1 only for p(n = 1) = 2, the only prime equal to a power of 2. a(n) = 2 for n in A159611 = A000720(A019434) = {2, 3, 7, 55, 6543} (probably complete), the Fermat primes F[k] = 2^2^k + 1 with k = 0, 1, 2, 3, 4. (On the graph one can distinctly see a(6543) = 2 corresponding to F[4] = 65537.) a(n) = 3 for n in A000720(A081091) = (4, 5, 6, 8, 12, 13, 19, 21, 25, 32, 33, 44, 98, 106, 116, 136, 174, 191, 310, 313, 319, 565, 568, ...). (End) MATHEMATICA Table[Plus @@ IntegerDigits[Prime[n], 2], {n, 1, 100}] (* Vincenzo Librandi, Mar 25 2014 *) PROG (PARI) A014499(n)=hammingweight(prime(n)) \\ M. F. Hasler, Nov 20 2009, updated Mar 03 2023 (Haskell) a014499 = a000120 . a000040 -- Reinhard Zumkeller, Feb 10 2013 (Magma) [&+Intseq(NthPrime(n), 2): n in [1..100] ]; // Vincenzo Librandi, Mar 25 2014 (Sage) [sum(i.digits(base=2)) for i in primes_first_n(200)] # Tom Edgar, Mar 25 2014 (Python) from sympy import prime def A014499(n): return prime(n).bit_count() # Chai Wah Wu, Mar 22 2023 CROSSREFS Cf. A035103, A035100, A004676, A090455. Cf. A027697, A027699 Cf. A180024. - Reinhard Zumkeller, Aug 08 2010 Cf. A072084. Cf. A159611 (indices of 2s), A000720(A081091) (indices of 3s). - M. F. Hasler, Mar 03 2023 Sequence in context: A194883 A328404 A175453 * A055778 A348772 A106482 Adjacent sequences: A014496 A014497 A014498 * A014500 A014501 A014502 KEYWORD nonn,base,easy AUTHOR Ingemar Assarsjo (ingemar(AT)binomen.se) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 18:10 EDT 2024. Contains 372916 sequences. (Running on oeis4.)