login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049084
a(n) = pi(n) if n is prime, otherwise 0.
266
0, 1, 2, 0, 3, 0, 4, 0, 0, 0, 5, 0, 6, 0, 0, 0, 7, 0, 8, 0, 0, 0, 9, 0, 0, 0, 0, 0, 10, 0, 11, 0, 0, 0, 0, 0, 12, 0, 0, 0, 13, 0, 14, 0, 0, 0, 15, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 17, 0, 18, 0, 0, 0, 0, 0, 19, 0, 0, 0, 20, 0, 21, 0, 0, 0, 0, 0, 22, 0, 0, 0, 23, 0, 0, 0, 0, 0, 24, 0, 0, 0
OFFSET
1,3
COMMENTS
pi(n) is the prime counting function, A000720.
Equals row sums of triangle A143541. - Gary W. Adamson, Aug 23 2008
LINKS
FORMULA
a(n) = pi(n)*(pi(n) - pi(n-1)), pi = A000720. - Reinhard Zumkeller, Nov 30 2003
a(n) = A000720(n*A010051(n)). - Labos Elemer, Jan 09 2004
a(n) = A000720(n)*A010051(n). - R. J. Mathar, Mar 01 2011
MAPLE
A049084 := proc(n)
local i;
if isprime(n) then
for i from 1 do
if ithprime(i) = n then
return i;
end if;
end do;
else
return 0 ;
fi;
end proc:
seq(A049084(n), n=1..120) ;
MATHEMATICA
Table[PrimePi[n] * Boole[PrimeQ[n]], {n, 92}] (* Jean-François Alcover, Nov 07 2011, after R. J. Mathar *)
Table[If[PrimeQ[n], PrimePi[n], 0], {n, 100}] (* Harvey P. Dale, Jan 09 2022 *)
PROG
(Haskell)
import Data.List (unfoldr)
a049084 n = a049084_list !! (fromInteger n - 1)
a049084_list = unfoldr x (1, 1, a000040_list) where
x (i, z, ps'@(p:ps)) | i == p = Just (z, (i + 1, z + 1, ps))
| i /= p = Just (0, (i + 1, z, ps'))
-- Reinhard Zumkeller, Apr 17 2012, Mar 31 2012, Sep 15 2011
(PARI) a(n)=if(isprime(n), primepi(n), 0) \\ Charles R Greathouse IV, Jan 08 2013
CROSSREFS
a(n) = A091227(A091202(n)).
Cf. A143541.
Sequence in context: A343488 A343270 A137303 * A234580 A352740 A108416
KEYWORD
nonn,easy
EXTENSIONS
Name clarified by Alonso del Arte, Feb 07 2020 at the suggestion of David A. Corneth
STATUS
approved