login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061712 Smallest prime with Hamming weight n (i.e., with exactly n 1's when written in binary). 25
2, 3, 7, 23, 31, 311, 127, 383, 991, 2039, 3583, 6143, 8191, 73727, 63487, 129023, 131071, 522239, 524287, 1966079, 4128767, 16250879, 14680063, 33546239, 67108351, 201064447, 260046847, 536739839, 1073479679, 5335154687, 2147483647 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) = 2^n - 1 for n in A000043, so Mersenne primes A000668 is a subsequence of this one. Binary length of a(n) is given by A110699 and the number of zeros in a(n) is given by A110700. - Max Alekseyev, Aug 03 2005
Drmota, Mauduit, & Rivat prove that a(n) exists for n > N for some N. - Charles R Greathouse IV, May 17 2010
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..3320 (first 1024 terms from T. D. Noe)
Michael Drmota, Christian Mauduit, and Joel Rivat, Primes with an average sum of digits, Compositio Mathematica 145 (2009), pp. 271-292.
Kenichiro Kashihara, Letter to the Editor, Math. Scientist 20 (1) (1995), 67-68.
Samuel S. Wagstaff, Prime numbers with a fixed number of one bits or zero bits in their binary representation, Experimental Mathematics 10 (2001), pp. 267-273.
FORMULA
Conjecture: a(n) < 2^(n+3). - T. D. Noe, Mar 14 2008
A000120(a(n)) = A014499(A049084(a(n))) = n. - Reinhard Zumkeller, Feb 10 2013
EXAMPLE
The fourth term is 23 (10111 in binary), since no prime less than 23 has exactly 4 1's in its binary representation.
MAPLE
with(combstruct); a:=proc(n) local m, is, s, t, r; if n=1 then return 2 fi; r:=+infinity; for m from 0 to 100 do is := iterstructs(Combination(n-2+m), size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i, i=s); # print(s, t); if isprime(t) then r:=min(t, r) fi; od; if r<+infinity then return r fi; od; return 0; end; seq(a(n), n=1..60); # Max Alekseyev, Aug 03 2005
MATHEMATICA
Do[k = 1; While[ Count[ IntegerDigits[ Prime[k], 2], 1] != n, k++ ]; Print[ Prime[k]], {n, 1, 30} ]
(* Second program: *)
a[n_] := Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n-2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[ s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Print["a(", n, ") = ", p]; Return[p]]]]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Mar 16 2015 *)
Module[{hw=Table[{n, DigitCount[n, 2, 1]}, {n, Prime[Range[250*10^6]]}]}, Table[ SelectFirst[hw, #[[2]]==k&], {k, 31}]][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 01 2019 *)
PROG
(Haskell)
a061712 n = fromJust $ find ((== n) . a000120) a000040_list
-- Reinhard Zumkeller, Feb 10 2013
(PARI) a(n)=forprime(p=2, , if (hammingweight(p) == n, return(p)); ); \\ Michel Marcus, Mar 16 2015
(Python)
from itertools import combinations
from sympy import isprime
def A061712(n):
l, k = n-1, 2**n
while True:
for d in combinations(range(l-1, -1, -1), l-n+1):
m = k-1 - sum(2**(e) for e in d)
if isprime(m):
return m
l += 1
k *= 2 # Chai Wah Wu, Sep 02 2021
CROSSREFS
Sequence in context: A127581 A278477 A118883 * A059661 A214704 A231075
KEYWORD
nonn,base,nice
AUTHOR
Alexander D. Healy, Jun 19 2001
EXTENSIONS
Extended to 60 terms by Max Alekseyev, Aug 03 2005
Further terms from T. D. Noe, Mar 14 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 12:15 EDT 2024. Contains 371969 sequences. (Running on oeis4.)