login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019434
Fermat primes: primes of the form 2^(2^k) + 1, for some k >= 0.
369
3, 5, 17, 257, 65537
OFFSET
1,1
COMMENTS
It is conjectured that there are only 5 terms. Currently it has been shown that 2^(2^k) + 1 is composite for 5 <= k <= 32 (see Eric Weisstein's Fermat Primes link). - Dmitry Kamenetsky, Sep 28 2008
No Fermat prime is a Brazilian number. So Fermat primes belong to A220627. For proof see Proposition 3 page 36 in "Les nombres brésiliens" in Links. - Bernard Schott, Dec 29 2012
This sequence and A001220 are disjoint (see "Other theorems about Fermat numbers" in Wikipedia link). - Felix Fröhlich, Sep 07 2014
Numbers n > 1 such that n * 2^(n-2) divides (n-1)! + 2^(n-1). - Thomas Ordowski, Jan 15 2015
From Jaroslav Krizek, Mar 17 2016: (Start)
Primes p such that phi(p) = 2*phi(p-1); primes from A171271.
Primes p such that sigma(p-1) = 2p - 3.
Primes p such that sigma(p-1) = 2*sigma(p) - 5.
For n > 1, a(n) = primes p such that p = 4 * phi((p-1) / 2) + 1.
Subsequence of A256444 and A256439.
Conjectures:
1) primes p such that phi(p) = 2*phi(p-2).
2) primes p such that phi(p) = 2*phi(p-1) = 2*phi(p-2).
3) primes p such that p = sigma(phi(p-2)) + 2.
4) primes p such that phi(p-1) + 1 divides p + 1.
5) numbers n such that sigma(n-1) = 2*sigma(n) - 5. (End)
Odd primes p such that ratio of the form (the number of nonnegative m < p such that m^q == m (mod p))/(the number of nonnegative m < p such that -m^q == m (mod p)) is a divisor of p for all nonnegative q. - Juri-Stepan Gerasimov, Oct 13 2020
Numbers n such that tau(n)*(number of distinct ratio (the number of nonnegative m < n such that m^q == m (mod n))/(the number of nonnegative m < n such that -m^q == m (mod n))) for nonnegative q is equal to 4. - Juri-Stepan Gerasimov, Oct 22 2020
The numbers of primitive roots for the five known terms are 1, 2, 8, 128, 32768. - Gary W. Adamson, Jan 13 2022
Prime numbers such that every residue is either a primitive root or a quadratic residue. - Keith Backman, Jul 11 2022
REFERENCES
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see Table 1, p. 458.
R. K. Guy, Unsolved Problems in Number Theory, A3.
Hardy and Wright, An Introduction to the Theory of Numbers, bottom of page 18 in the sixth edition, gives an heuristic argument that this sequence is finite.
LINKS
Anas AbuDaqa, Amjad Abu-Hassan, and Muhammad Imam, Taxonomy and Practical Evaluation of Primality Testing Algorithms, arXiv:2006.08444 [cs.CR], 2020.
Cyril Banderier, Pepin's Criterion For Fermat Numbers (in French)
Kent D. Boklan and John H. Conway, Expect at most one billionth of a new Fermat Prime!, arXiv:1605.01371 [math.NT], 2016.
P. Bruillard, S.-H. Ng, E. Rowell, and Z. Wang, On modular categories, arXiv:1310.7050 [math.QA], 2013-2015.
C. K. Caldwell, The Prime Glossary, Fermat number
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
Salah Eddine Rihane, Chèfiath Awero Adegbindin, and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38. Local copy, included here with permission from the editors of Quadrature.
Yaryna Stelmakh, Homeomorphisms of the space of non-zero integers with the Kirch topology, arXiv:2101.04676 [math.GN], 2020.
Eric Weisstein's World of Mathematics, Fermat Number
Eric Weisstein's World of Mathematics, Fermat Prime
Eric Weisstein's World of Mathematics, Pepin's Test
Wikipedia, Fermat number
Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
FORMULA
a(n+1) = A180024(A049084(a(n))). - Reinhard Zumkeller, Aug 08 2010
a(n) = 1 + A001146(n-1), if 1 <= n <= 5. - Omar E. Pol, Jun 08 2018
MATHEMATICA
Select[Table[2^(2^n) + 1, {n, 0, 4}], PrimeQ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
PROG
(Magma) [2^(2^n)+1 : n in [0..4] | IsPrime(2^(2^n)+1)]; // Arkadiusz Wesolowski, Jun 09 2011
(PARI) for(i=0, 10, isprime(2^2^i+1) && print1(2^2^i+1, ", ")) \\ M. F. Hasler, Nov 21 2009
(Sage) [2^(2^n)+1 for n in (0..4) if is_prime(2^(2^n)+1)] # G. C. Greubel, Mar 07 2019
CROSSREFS
Subsequence of A147545 and of A334101. Cf. also A333788, A334092.
Cf. A045544.
Sequence in context: A056130 A273871 A078726 * A164307 A125045 A093179
KEYWORD
nonn,hard,nice
STATUS
approved