OFFSET
0,2
COMMENTS
From Peter Bala, Oct 04 2023: (Start)
Related simple continued fractions expansions (see my comments in A019425):
tan(1/(10*k)) = [0; 10*k - 1, 1, 30*k - 2, 1, 50*k - 2, 1, 70*k - 2, 1, 90*k - 2, 1, ...] for k >= 1.
If d is a divisor of 10 with d*d' = 10 then the simple continued fraction expansion of d*tan(1/10) begins [0; d' - 1, 1, 30*d - 2, 1, 5*d' - 2, 1, 70*d - 2, 1, 9*d' - 2, 1, 110*d - 2, 1, 13*d' - 2, ...], while the simple continued fraction expansion of (1/d)*tan(1/10) begins [ 0; 10*d - 1, 1, 3*d'- 2, 1, 50*d - 2, 1, 7*d' - 2, 1, 90*d - 2, 1, 11*d' - 2, 1, 130*d - 2, ...]. (End)
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
G. Xiao, Contfrac
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
From Colin Barker, Sep 08 2013: (Start)
a(n) = -1/2+(3*(-1)^n)/2+5*n-5*(-1)^n*n for n>1.
a(n) = 2*a(n-2)-a(n-4) for n>5.
G.f.: x*(x^4-x^3+10*x^2+x+9) / ((x-1)^2*(x+1)^2). (End)
EXAMPLE
0.10033467208545054505808004... = 0 + 1/(9 + 1/(1 + 1/(28 + 1/(1 + ...)))). - Harry J. Smith, Jun 14 2009
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1}, {0, 9, 1, 28, 1, 48}, 80] (* or *) Join[{0, 9}, Riffle[NestList[20+#&, 28, 40], 1, {1, -1, 2}]] (* Harvey P. Dale, Jul 23 2023 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 99000); x=contfrac(tan(1/10)); for (n=0, 20000, write("b019433.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 14 2009
(PARI) Vec(x*(x^4-x^3+10*x^2+x+9)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013
CROSSREFS
KEYWORD
nonn,cofr,easy
AUTHOR
STATUS
approved