login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092477
Triangle read by rows: T(n,k) = (2^k - 1)^n, 1<=k<=n.
10
1, 1, 9, 1, 27, 343, 1, 81, 2401, 50625, 1, 243, 16807, 759375, 28629151, 1, 729, 117649, 11390625, 887503681, 62523502209, 1, 2187, 823543, 170859375, 27512614111, 3938980639167, 532875860165503, 1, 6561, 5764801, 2562890625, 852891037441, 248155780267521, 67675234241018881, 17878103347812890625
OFFSET
1,3
COMMENTS
T(n,1)=1; T(n,2)=A000244(n); T(n,n-1)=A086206(n); T(n,n)=A055601(n).
T(n,k) is the number of n X k binary matrices with no 0 rows. The triangular array becomes a rectangular array by lifting the restriction on k. [From Geoffrey Critzer, Dec 03 2009]
From Manfred Boergens, Jun 23 2024: (Start)
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k, with P(.) denoting the power set.
For nonempty A_j see A218695.
For disjoint A_j see A089072.
For nonempty and disjoint A_j see A019538.
Lifting the restriction on k and swapping n,k gives A329943. (End)
EXAMPLE
Triangle begins
1
1,9;
1,27,343;
1,81,2401,50625;
1,243,16807,759375, 28629151 [Geoffrey Critzer, Dec 03 2009]
MAPLE
A092477 := proc(n, k)
(2^k-1)^n ;
end proc:
seq(seq( A092477(n, k), k=1..n), n=1..12) ; # R. J. Mathar, Nov 18 2023
MATHEMATICA
Table[Table[(2^k - 1)^n, {k, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, Dec 03 2009 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Mar 26 2004
EXTENSIONS
More terms from Michel Marcus, Jun 23 2024
STATUS
approved