|
|
A092477
|
|
Triangle read by rows: T(n,k) = (2^k - 1)^n, 1<=k<=n.
|
|
4
|
|
|
1, 1, 9, 1, 27, 343, 1, 81, 2401, 50625, 1, 243, 16807, 759375, 28629151, 1, 729, 117649, 11390625, 887503681, 62523502209, 1, 2187, 823543, 170859375, 27512614111, 3938980639167, 532875860165503, 1, 6561, 5764801, 2562890625
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
T(n,1)=1; T(n,2)=A000244(n); T(n,n-1)=A086206(n); T(n,n)=A055601(n).
T(n,k) is the number of n X k binary matrices with no 0 rows. The triangular array becomes a rectangular array by lifting the restriction on k. [From Geoffrey Critzer, Dec 03 2009]
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
EXAMPLE
|
Triangle begins 1 1,9 1,27,343 1,81,2401,50625 1,243,16807,759375, 28629151 [From Geoffrey Critzer, Dec 03 2009]
|
|
MATHEMATICA
|
Table[Table[(2^k - 1)^n, {k, 1, n}], {n, 1, 6}] // Grid [From Geoffrey Critzer, Dec 03 2009]
|
|
CROSSREFS
|
Sequence in context: A181318 A202006 A195278 * A019433 A276634 A050312
Adjacent sequences: A092474 A092475 A092476 * A092478 A092479 A092480
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Reinhard Zumkeller, Mar 26 2004
|
|
STATUS
|
approved
|
|
|
|