OFFSET
1,5
COMMENTS
This symmetric table is defined in the Kreweras papers, used also in A223911. Its upper or lower triangular part equals A183109, which might provide a simpler formula.
Number of h X k binary matrices with no zero rows or columns. - Andrew Howroyd, Mar 29 2023
A(h,k) is the number of coverings of [h] by tuples (A_1,...,A_k) in P([h])^k with nonempty A_j, with P(.) denoting the power set. For the disjoint case see A019538. For tuples with "nonempty" omitted see A092477 and A329943 (amendment by Manfred Boergens, Jun 24 2024). - Manfred Boergens, May 26 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
G. Kreweras, Dénombrements systématiques de relations binaires externes, Math. Sci. Humaines 26 (1969) 5-15.
G. Kreweras, Dénombrement des ordres étagés, Discrete Math., 53 (1985), 147-149.
FORMULA
From Andrew Howroyd, Mar 29 2023: (Start)
A(h, k) = Sum_{i=0..h} (-1)^(h-i) * binomial(h, i) * (2^i-1)^k.
A052332(n) = Sum_{i=1..n-1} binomial(n,i)*A(i, n-i) for n > 0. (End)
EXAMPLE
Array A(h,k) begins:
=====================================================
h\k | 1 2 3 4 5 6 ...
----+------------------------------------------------
1 | 1 1 1 1 1 1 ...
2 | 1 7 25 79 241 727 ...
3 | 1 25 265 2161 16081 115465 ...
4 | 1 79 2161 41503 693601 10924399 ...
5 | 1 241 16081 693601 24997921 831719761 ...
6 | 1 727 115465 10924399 831719761 57366997447 ...
...
PROG
(PARI) c(h, k)={(h<2 || k<2) & return(1); sum(i=1, h-1, binomial(h, h-i)*2^i*c(i, k-1))+(2^h-1)*c(h, k-1)}
/* For better performance when h and k are large, insert the following memoization code before "sum(...)": cM=='cM & cM=matrix(h, k); my(s=matsize(cM));
s[1] >= h & s[2] >= k & cM[h, k] & return(cM[h, k]);
s[1]<h & cM=concat(cM~, matrix(s[2], h-s[1]))~;
s[2]<k & cM=concat(cM, matrix(max(h, s[1]), k-s[2])); cM[h, k]= */
(PARI) A(m, n) = sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n ) \\ Andrew Howroyd, Mar 29 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved