login
A168517
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = -1, b = 1, and c = 1, read by rows.
5
1, 1, 1, 1, 7, 1, 1, 27, 27, 1, 1, 87, 260, 87, 1, 1, 263, 1828, 1828, 263, 1, 1, 779, 11131, 24746, 11131, 779, 1, 1, 2299, 62793, 267515, 267515, 62793, 2299, 1, 1, 6799, 338902, 2529377, 4753074, 2529377, 338902, 6799, 1, 1, 20175, 1780242, 21935526, 70068408, 70068408, 21935526, 1780242, 20175, 1
OFFSET
0,5
FORMULA
G.f.: (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1 - x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = -1, b = 1, and c = 1.
From G. C. Greubel, Mar 31 2022: (Start)
T(n, k) = (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) ), with a = -1, b = 1, and c = 1.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 27, 27, 1;
1, 87, 260, 87, 1;
1, 263, 1828, 1828, 263, 1;
1, 779, 11131, 24746, 11131, 779, 1;
1, 2299, 62793, 267515, 267515, 62793, 2299, 1;
1, 6799, 338902, 2529377, 4753074, 2529377, 338902, 6799, 1;
1, 20175, 1780242, 21935526, 70068408, 70068408, 21935526, 1780242, 20175, 1;
MATHEMATICA
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x, -n-1, 1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x, -n, 1/2]);
Table[CoefficientList[p[x, n, -1, 1, 1], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
PROG
(Sage)
def A168517(n, k, a, b, c): return (1/2)*( a*binomial(n, k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1, k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168517(n, k, -1, 1, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 28 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 31 2022
STATUS
approved