login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168549
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 31, b = -59, and c = 15, read by rows.
5
1, 1, 1, 1, 3, 1, 1, 67, 67, 1, 1, 435, 1596, 435, 1, 1, 1951, 16476, 16476, 1951, 1, 1, 7383, 123243, 282258, 123243, 7383, 1, 1, 25507, 783537, 3435627, 3435627, 783537, 25507, 1, 1, 83595, 4543678, 34677285, 65518690, 34677285, 4543678, 83595, 1, 1, 265351, 24934378, 312192718, 1002545920, 1002545920, 312192718, 24934378, 265351, 1
OFFSET
0,5
FORMULA
G.f.: (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1 - x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 31, b = -59, and c = 15.
From G. C. Greubel, Mar 31 2022: (Start)
T(n, k) = (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) ), with a = 31, b = -59, and c = 15.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 67, 67, 1;
1, 435, 1596, 435, 1;
1, 1951, 16476, 16476, 1951, 1;
1, 7383, 123243, 282258, 123243, 7383, 1;
1, 25507, 783537, 3435627, 3435627, 783537, 25507, 1;
1, 83595, 4543678, 34677285, 65518690, 34677285, 4543678, 83595, 1;
MATHEMATICA
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x, -n-1, 1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x, -n, 1/2]);
Table[CoefficientList[p[x, n, 31, -59, 15], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
PROG
(Sage)
def A168549(n, k, a, b, c): return (1/2)*( a*binomial(n, k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1, k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168549(n, k, 31, -59, 15) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Nov 29 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 31 2022
STATUS
approved