The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177848 Triangle, read by rows, T(n, k) = t(k, n-k+1) - t(1, n) + 1 where t(n, m) = (n*m)!*Beta(n, m). 1
 1, 1, 1, 1, 3, 1, 1, 55, 55, 1, 1, 1993, 12073, 1993, 1, 1, 120841, 7983241, 7983241, 120841, 1, 1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1, 1, 1556750161, 38109367290961, 8688935743482961, 8688935743482961, 38109367290961, 1556750161, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are {1, 2, 5, 112, 16061, 16208166, 174379388407, 17454093335048168, 27083470639271574245769, 421762213493139881153379087370, ...}. LINKS G. C. Greubel, Rows n = 1..30 of the triangle, flattened FORMULA Let t(n, k) = (n*k)!*Beta(n, k) then T(n, k) = t(k, n-k+1) - t(1, n) + 1. EXAMPLE Triangle begins as:   1;   1,        1;   1,        3,           1;   1,       55,          55,            1;   1,     1993,       12073,         1993,           1;   1,   120841,     7983241,      7983241,      120841,        1;   1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1; MATHEMATICA t[n_, k_]:= (n*k)!*Beta[n, k]; Table[t[k, n-k+1] - t[1, n] + 1, {n, 12}, {k, n}]//Flatten PROG (Sage) def t(n, k): return factorial(n*k)*beta(n, k) flatten([[t(k, n-k+1) - t(1, n) + 1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 06 2021 CROSSREFS Cf. A060854. Sequence in context: A173505 A253178 A174587 * A168549 A010272 A172093 Adjacent sequences:  A177845 A177846 A177847 * A177849 A177850 A177851 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, May 14 2010 EXTENSIONS Edited by G. C. Greubel, Feb 06 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 21:19 EDT 2021. Contains 347717 sequences. (Running on oeis4.)