login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177845
a(n) = 6*a(n-1)-8*a(n-2)-3 for n > 2; a(0)=775, a(1)=8919, a(2)=34223.
5
775, 8919, 34223, 133983, 530111, 2108799, 8411903, 33601023, 134310911, 537057279, 2147856383, 8590680063, 34361229311, 137441935359, 549761777663, 2199035183103, 8796116877311, 35184419799039, 140737583775743
OFFSET
0,1
COMMENTS
Related to Reverse and Add trajectory of 775 in base 2: a(n) = A077077(4*n+2)/3, i.e. one third of third quadrisection of A077077.
FORMULA
a(n) = 2*4^(n+5)+91*2^(n+2)-1 for n > 0.
G.f.: (775+3494*x-17360*x^2+13088*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(1): x*(8919-28210*x+19288*x^2) / ((1-x)*(1-2*x)*(1-4*x)).
a(0)=775, a(1)=8919, a(2)=34223, a(3)=133983, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, Mar 04 2013
MATHEMATICA
nxt[{a_, b_}]:={b, 6b-8a-3}; Join[{775}, Transpose[NestList[nxt, {8919, 34223}, 20]][[1]]] (* or *) Join[{775}, LinearRecurrence[{7, -14, 8}, {8919, 34223, 133983}, 20]] (* Harvey P. Dale, Mar 04 2013 *)
CoefficientList[Series[(775 + 3494 x - 17360 x^2 + 13088 x^3)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
PROG
(PARI) {m=19; v=concat([775, 8919, 34223], vector(m-3)); for(n=4, m, v[n]=6*v[n-1]-8*v[n-2]-3); v}
(Magma) [775] cat [2*4^(n+5)+91*2^(n+2)-1: n in [1..25]]; // Vincenzo Librandi, Sep 24 2013
CROSSREFS
Cf. A077077 (Reverse and Add trajectory of 775 in base 2), A177843, A177844, A177846.
Sequence in context: A250087 A252673 A077077 * A177843 A202893 A204300
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 14 2010
STATUS
approved