login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177843
a(n) = 6*a(n-1)-8*a(n-2)-9 for n > 3; a(0)=775, a(1)=8919, a(2)=49581, a(3)=197469.
5
775, 8919, 49581, 197469, 788157, 3149181, 12589821, 50345469, 201354237, 805361661, 3221336061, 12885123069, 51540049917, 206159314941, 824635490301, 3298538422269, 13194146611197, 52776572289021, 211106260844541
OFFSET
0,1
COMMENTS
Related to Reverse and Add trajectory of 775 in base 2: a(n) = A077077(4*n), i.e. first quadrisection of A077077.
FORMULA
a(n) = 3*4^(n+5)+27*2^(n+2)-3 for n > 1.
G.f.: (775+3494*x-2002*x^2-30932*x^3+28656*x^4) / ((1-x)*(1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(2): 9*x^2*(5509-16622*x+11112*x^2) / ((1-x)*(1-2*x)*(1-4*x)).
MATHEMATICA
CoefficientList[Series[(775 + 3494 x - 2002 x^2 - 30932 x^3 + 28656 x^4)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
LinearRecurrence[{7, -14, 8}, {775, 8919, 49581, 197469, 788157}, 20] (* Harvey P. Dale, Aug 03 2023 *)
PROG
(PARI) {m=19; v=concat([775, 8919, 49581, 197469], vector(m-4)); for(n=5, m, v[n]=6*v[n-1]-8*v[n-2]-9); v}
(Magma) [775, 8919] cat [3*4^(n+5)+27*2^(n+2)-3: n in [2..25]]; // Vincenzo Librandi, Sep 24 2013
CROSSREFS
Cf. A077077 (Reverse and Add trajectory of 775 in base 2), A177844, A177845, A177846.
Sequence in context: A252673 A077077 A177845 * A202893 A204300 A043519
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 14 2010
STATUS
approved