OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7, -14, 8).
FORMULA
a(n) = 3*4^(n+5)+27*2^(n+2)-3 for n > 1.
G.f.: (775+3494*x-2002*x^2-30932*x^3+28656*x^4) / ((1-x)*(1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(2): 9*x^2*(5509-16622*x+11112*x^2) / ((1-x)*(1-2*x)*(1-4*x)).
MATHEMATICA
CoefficientList[Series[(775 + 3494 x - 2002 x^2 - 30932 x^3 + 28656 x^4)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
LinearRecurrence[{7, -14, 8}, {775, 8919, 49581, 197469, 788157}, 20] (* Harvey P. Dale, Aug 03 2023 *)
PROG
(PARI) {m=19; v=concat([775, 8919, 49581, 197469], vector(m-4)); for(n=5, m, v[n]=6*v[n-1]-8*v[n-2]-9); v}
(Magma) [775, 8919] cat [3*4^(n+5)+27*2^(n+2)-3: n in [2..25]]; // Vincenzo Librandi, Sep 24 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 14 2010
STATUS
approved