login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177847
Array T(n,m)= (n*m)!*Beta(n, m) read by antidiagonals.
1
1, 1, 1, 2, 4, 2, 6, 60, 60, 6, 24, 2016, 12096, 2016, 24, 120, 120960, 7983360, 7983360, 120960, 120, 720, 11404800, 12454041600, 149448499200, 12454041600, 11404800, 720, 5040, 1556755200, 38109367296000, 8688935743488000, 8688935743488000
OFFSET
1,4
COMMENTS
Beta(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y).
FORMULA
T(n,m) = Gamma(n*m+1)*Gamma(n)*Gamma(m)/Gamma(n+m).
T(1,m) = A000142(m-1).
T(n,m) = T(m,n).
EXAMPLE
The array starts in row n=1 as:
1, 1, 2, 6, 24, ...
1, 4, 60, 2016, 120960, ...
2, 60, 12096, 7983360, 12454041600, ...
6, 2016, 7983360, 149448499200, 8688935743488000, ...
24, 120960, 12454041600, 8688935743488000, 24620968322747596800000, ...
MAPLE
A177847 := proc(n, m) (n*m)!*Beta(n, m) ; end proc:
seq (seq (A177847(n, 1+d-n), n=1..d), d=1..10);
MATHEMATICA
t[n_, m_] = (n*m)!*Beta[n, m];
a = Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Cf. A060854.
Sequence in context: A154120 A361727 A261964 * A296471 A021416 A094756
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 14 2010
STATUS
approved