login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361727
Diagonal of rational function 1/(1 - (1 + x*y) * (x^3 + y^3)).
3
1, 0, 0, 2, 4, 2, 6, 24, 36, 44, 126, 300, 470, 860, 2080, 4192, 7420, 15260, 33124, 64568, 124558, 259632, 535668, 1055460, 2118414, 4373412, 8872644, 17765396, 36138168, 73972404, 149793424, 303140552, 618565948, 1261454064, 2561056212, 5211145368
OFFSET
0,4
LINKS
FORMULA
G.f.: 1/sqrt(1 - 4 * x^3 * (1+x)^2).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(2*k,n-3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: n*a(n) = 2*(2*n-3)*a(n-3) + 8*(n-2)*a(n-4) + 2*(2*n-5)*a(n-5).
a(n) ~ 1 / (sqrt((5 - 8*r^3 - 8*r^4)*Pi*n) * r^n), where r = 0.484163615233802299545617907511361266999078019358842974840776720... is the real root of the equation -1 + 4*r^3 + 8*r^4 + 4*r^5 = 0. (End)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(2*k, n-3*k));
CROSSREFS
Sequence in context: A021012 A229460 A154120 * A261964 A177847 A296471
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 22 2023
STATUS
approved