The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A361729 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x^2 + y^2 + z^2)). 4
1, 0, 6, 18, 108, 546, 3030, 16920, 96480, 557460, 3255426, 19186020, 113905386, 680583708, 4088506428, 24677473884, 149564145060, 909784736388, 5552109174084, 33981183515664, 208523253915306, 1282621025382840, 7906367632595328, 48832556909752044 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (3*k)!/k!^3 * binomial(3*k,n-2*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 3*(n-1)*(3*n - 4)*(3*n - 2)*a(n-2) + 12*(9*n^3 - 36*n^2 + 41*n - 9)*a(n-3) + 18*(3*n - 8)*(3*n^2 - 7*n + 1)*a(n-4) + 12*(9*n^3 - 54*n^2 + 80*n - 5)*a(n-5) + 3*n*(3*n - 13)*(3*n - 8)*a(n-6).
a(n) ~ c * d^n / n, where d = 6.45021022459140188868150633620495776554217848977385402261531271... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^5 = 0 and c = sqrt(3)/(2*Pi) = 0.275664447710896024755663249156484720698693240183320326399... (End)
PROG
(PARI) a(n) = sum(k=0, n\2, (3*k)!/k!^3*binomial(3*k, n-2*k));
CROSSREFS
Sequence in context: A181038 A222857 A367664 * A108735 A143556 A007126
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 22 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)