login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361729
Diagonal of rational function 1/(1 - (1 + x*y*z) * (x^2 + y^2 + z^2)).
4
1, 0, 6, 18, 108, 546, 3030, 16920, 96480, 557460, 3255426, 19186020, 113905386, 680583708, 4088506428, 24677473884, 149564145060, 909784736388, 5552109174084, 33981183515664, 208523253915306, 1282621025382840, 7906367632595328, 48832556909752044
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (3*k)!/k!^3 * binomial(3*k,n-2*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 3*(n-1)*(3*n - 4)*(3*n - 2)*a(n-2) + 12*(9*n^3 - 36*n^2 + 41*n - 9)*a(n-3) + 18*(3*n - 8)*(3*n^2 - 7*n + 1)*a(n-4) + 12*(9*n^3 - 54*n^2 + 80*n - 5)*a(n-5) + 3*n*(3*n - 13)*(3*n - 8)*a(n-6).
a(n) ~ c * d^n / n, where d = 6.45021022459140188868150633620495776554217848977385402261531271... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^5 = 0 and c = sqrt(3)/(2*Pi) = 0.275664447710896024755663249156484720698693240183320326399... (End)
PROG
(PARI) a(n) = sum(k=0, n\2, (3*k)!/k!^3*binomial(3*k, n-2*k));
CROSSREFS
Sequence in context: A181038 A222857 A367664 * A108735 A143556 A007126
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 22 2023
STATUS
approved