login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361728
Diagonal of rational function 1/(1 - (1 + x*y*z) * (x + y + z)).
3
1, 6, 108, 2238, 51126, 1234836, 30933846, 795124008, 20832161238, 553908550416, 14901620938668, 404737904238768, 11080360585597974, 305375448989901564, 8464333256181647028, 235772833122673888788, 6595763835075158604618
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} (3*k)!/k!^3 * binomial(3*k,n-k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = 2*(n-1)*(13*n^2 - 13*n + 3)*a(n-1) + 12*(9*n^3 - 27*n^2 + 23*n - 3)*a(n-2) + 18*(9*n^3 - 36*n^2 + 38*n - 3)*a(n-3) + 12*(9*n^3 - 45*n^2 + 56*n - 2)*a(n-4) + 3*n*(3*n - 11)*(3*n - 7)*a(n-5).
a(n) ~ c * d^n / n, where d = 29.8094342438507627973286122946283855557156321402886102401458498265933891... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^4 = 0 and c = sqrt(3)/(2*Pi) = 0.27566444771089602475566324915648472069869324018332... (End)
MATHEMATICA
Table[Sum[(3*k)!/k!^3 * Binomial[3*k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 22 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (3*k)!/k!^3*binomial(3*k, n-k));
CROSSREFS
Sequence in context: A099138 A230540 A295791 * A055532 A369532 A288148
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 22 2023
STATUS
approved