login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230540
a(n) = 2*n*3^(2*n-1).
2
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
OFFSET
0,2
COMMENTS
Arithmetic derivative of 9^n: a(n) = A003415(9^n).
Sum of reciprocals of a(n), for n>0: (3/2)*log(9/8).
FORMULA
G.f.: 6*x/(1-9*x)^2.
a(n) = 6*A053540(n), with A053540(0)=0.
MATHEMATICA
Table[2 n 3^(2 n - 1), {n, 0, 20}]
PROG
(Magma) [2*n*3^(2*n-1): n in [0..20]];
(PARI) a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
CROSSREFS
Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), A230539 (k=8), this sequence, A085708 (k=10), A081127 (k=11).
Sequence in context: A127213 A129003 A099138 * A295791 A361728 A055532
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Oct 23 2013
STATUS
approved