login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*n*3^(2*n-1).
2

%I #17 Sep 08 2022 08:46:06

%S 0,6,108,1458,17496,196830,2125764,22320522,229582512,2324522934,

%T 23245229340,230127770466,2259436291848,22029503845518,

%U 213516729579636,2058911320946490,19765548681086304,189008059262887782,1801135623563989452,17110788423857899794

%N a(n) = 2*n*3^(2*n-1).

%C Arithmetic derivative of 9^n: a(n) = A003415(9^n).

%C Sum of reciprocals of a(n), for n>0: (3/2)*log(9/8).

%H Bruno Berselli, <a href="/A230540/b230540.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-81).

%F G.f.: 6*x/(1-9*x)^2.

%F a(n) = 6*A053540(n), with A053540(0)=0.

%t Table[2 n 3^(2 n - 1), {n, 0, 20}]

%o (Magma) [2*n*3^(2*n-1): n in [0..20]];

%o (PARI) a(n) = 2*n*3^(2*n-1); \\ _Michel Marcus_, Oct 23 2013

%Y Cf. A001019, A003415.

%Y Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), A230539 (k=8), this sequence, A085708 (k=10), A081127 (k=11).

%K nonn,easy

%O 0,2

%A _Bruno Berselli_, Oct 23 2013