login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230541
Numbers n such that the digits of sigma(n) are a permutation of those of sigma*(n), where sigma*(n) is the sum of anti-divisors of n (A066417).
1
11, 20, 22, 26, 33, 65, 82, 117, 209, 218, 376, 417, 483, 508, 537, 561, 675, 758, 910, 1186, 1208, 1317, 1350, 1828, 2039, 2192, 2347, 2471, 2840, 2889, 4129, 4369, 4389, 4495, 4893, 5007, 6430, 7276, 7690, 8246, 8777, 9289, 10651, 11727, 11797, 12048, 12099
OFFSET
1,1
LINKS
EXAMPLE
Divisors of 376 are 1, 2, 4, 8, 47, 94, 376, 188 and sigma(376) = 720; anti-divisors of 376 are 3, 16, 251 and sigma*(376) = 270.
Therefore 376 is part of the sequence because the digits of 720 are a permutation of the digits of 270.
MAPLE
with(numtheory); P:= proc(i) local a, b, c, j, k, n, ok, p;
for n from 3 to i do b:=[]; c:=[];
k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
while a>0 do b:=[op(b), a mod 10]; a:=trunc(a/10); od; a:=sigma(n);
while a>0 do c:=[op(c), a mod 10]; a:=trunc(a/10); od;
if nops(b)=nops(c) then b:=sort(b); c:=sort(c); b:=b-c; ok:=1;
for j from 1 to nops(b) do if b[j]<>0 then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end; P(10^6);
CROSSREFS
KEYWORD
nonn,base,less
AUTHOR
Paolo P. Lava, Oct 23 2013
STATUS
approved