OFFSET
1,3
COMMENTS
See A066272 for definition of anti-divisor.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Jon Perry, The Anti-divisor. [Cached copy]
Jon Perry, The Anti-divisor: Even More Anti-Divisors. [Cached copy]
FORMULA
G.f.: Sum_{k>0} (2k x^(3k) / (1 - x^(2k)) + (2k+1)(x^(3k+1) + x^(3k+2)) / (1 - x^(2k+1))). - Franklin T. Adams-Watters, Sep 11 2009
For n>1, a(n) = A000203(2*n-1) + A000203(2*n+1) + A000203(n/2^k)*2^(k+1) - 6*n - 2, where k=A007814(n). - Max Alekseyev, Apr 27 2010
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/8 - 3 = 0.70110165... . - Amiram Eldar, Jan 19 2024
EXAMPLE
For n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 28.
MAPLE
# Uses antidivisors() implemented in A066272.
A066417 := proc(n) add(d, d=antidivisors(n)) ; end proc: # R. J. Mathar, Jul 04 2011
# faster alternative with Alekseyev formula
A066417 := proc(n)
k := A007814(n) ;
numtheory[sigma](2*n-1)+numtheory[sigma](2*n+1) +numtheory[sigma(n/2^k)*2^(k+1) -6*n-2 ;
end proc: # R. J. Mathar, Nov 11 2014
MATHEMATICA
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Plus @@ antid[n], {n, 70}] (* Robert G. Wilson v, Mar 15 2004 *)
a066417[n_Integer] := Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]]; Array[a066417, 120] (* Michael De Vlieger, Aug 08 2014, after Harvey P. Dale at A066272 *)
PROG
(PARI) al(n)=Vec(sum(k=1, n, 2*k*(x^(3*k)+x*O(x^n))/(1-x^(2*k))+(2*k+1)*(x^(3*k+1)+x^(3*k+2)+x*O(x^n))/(1-x^(2*k+1)))) \\ Franklin T. Adams-Watters, Sep 11 2009
(PARI) { a(n) = my(k); if(n>1, k=valuation(n, 2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0); } \\ Max Alekseyev, Apr 27 2010
(Python)
from sympy import divisors
A066417 = [sum([2*d for d in divisors(n) if n > 2*d and n%(2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n%d] + [d for d in divisors(2*n+1) if n > d >=2 and n%d]) for n in range(1, 10**6)] # Chai Wah Wu, Aug 12 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Dec 28 2001
STATUS
approved