login
A066417
Sum of anti-divisors of n.
75
0, 0, 2, 3, 5, 4, 10, 8, 8, 14, 12, 13, 19, 16, 18, 14, 28, 28, 18, 24, 22, 36, 34, 23, 39, 24, 42, 46, 24, 36, 42, 58, 48, 30, 52, 32, 50, 70, 52, 55, 41, 66, 56, 40, 86, 58, 60, 56, 72, 80, 42, 94, 88, 52, 74, 56, 74, 96, 90, 107, 57, 78, 112, 46, 84, 86, 132, 112, 54, 102
OFFSET
1,3
COMMENTS
See A066272 for definition of anti-divisor.
LINKS
Jon Perry, The Anti-divisor. [Cached copy]
FORMULA
G.f.: Sum_{k>0} (2k x^(3k) / (1 - x^(2k)) + (2k+1)(x^(3k+1) + x^(3k+2)) / (1 - x^(2k+1))). - Franklin T. Adams-Watters, Sep 11 2009
For n>1, a(n) = A000203(2*n-1) + A000203(2*n+1) + A000203(n/2^k)*2^(k+1) - 6*n - 2, where k=A007814(n). - Max Alekseyev, Apr 27 2010
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/8 - 3 = 0.70110165... . - Amiram Eldar, Jan 19 2024
EXAMPLE
For n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 28.
MAPLE
# Uses antidivisors() implemented in A066272.
A066417 := proc(n) add(d, d=antidivisors(n)) ; end proc: # R. J. Mathar, Jul 04 2011
# faster alternative with Alekseyev formula
A066417 := proc(n)
k := A007814(n) ;
numtheory[sigma](2*n-1)+numtheory[sigma](2*n+1) +numtheory[sigma(n/2^k)*2^(k+1) -6*n-2 ;
end proc: # R. J. Mathar, Nov 11 2014
MATHEMATICA
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Plus @@ antid[n], {n, 70}] (* Robert G. Wilson v, Mar 15 2004 *)
a066417[n_Integer] := Total[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]]; Array[a066417, 120] (* Michael De Vlieger, Aug 08 2014, after Harvey P. Dale at A066272 *)
PROG
(PARI) al(n)=Vec(sum(k=1, n, 2*k*(x^(3*k)+x*O(x^n))/(1-x^(2*k))+(2*k+1)*(x^(3*k+1)+x^(3*k+2)+x*O(x^n))/(1-x^(2*k+1)))) \\ Franklin T. Adams-Watters, Sep 11 2009
(PARI) { a(n) = my(k); if(n>1, k=valuation(n, 2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0); } \\ Max Alekseyev, Apr 27 2010
(Python)
from sympy import divisors
A066417 = [sum([2*d for d in divisors(n) if n > 2*d and n%(2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n%d] + [d for d in divisors(2*n+1) if n > d >=2 and n%d]) for n in range(1, 10**6)] # Chai Wah Wu, Aug 12 2014
KEYWORD
nonn
AUTHOR
Jon Perry, Dec 28 2001
STATUS
approved