|
|
A066419
|
|
Numbers k such that k! is not divisible by the sum of the decimal digits of k!.
|
|
1
|
|
|
432, 444, 453, 458, 474, 476, 485, 489, 498, 507, 509, 532, 539, 541, 548, 550, 552, 554, 555, 556, 560, 565, 567, 576, 593, 597, 603, 608, 609, 610, 611, 612, 613, 624, 630, 632, 634, 640, 645, 657, 663, 665, 683, 685, 686, 692, 698, 703, 706, 708, 714
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Matthew Conroy)
|
|
EXAMPLE
|
The sum of the decimal digits of 5! is 1+2+0=3 and 3 divides 120, so 5 is not in the sequence.
The sum of the decimal digits of 432! is 3897 = (9)(433) and 3897 does not divide 432!, so 432 is in the sequence.
|
|
MATHEMATICA
|
Select[Range[1000], !Divisible[Factorial[#], Total[IntegerDigits[Factorial[#]]]] &], (* Tanya Khovanova, Jun 13 2021 *)
|
|
PROG
|
(Python)
from math import factorial
def sd(n): return sum(map(int, str(n)))
def ok(f): return f%sd(f) != 0
print([n for n in range(1, 715) if ok(factorial(n))]) # Michael S. Branicky, Jun 13 2021
|
|
CROSSREFS
|
Sequence in context: A063463 A175026 A205192 * A245469 A069781 A337670
Adjacent sequences: A066416 A066417 A066418 * A066420 A066421 A066422
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Matthew Conroy, Dec 25 2001
|
|
STATUS
|
approved
|
|
|
|