login
A066419
Numbers k such that k! is not divisible by the sum of the decimal digits of k!.
3
432, 444, 453, 458, 474, 476, 485, 489, 498, 507, 509, 532, 539, 541, 548, 550, 552, 554, 555, 556, 560, 565, 567, 576, 593, 597, 603, 608, 609, 610, 611, 612, 613, 624, 630, 632, 634, 640, 645, 657, 663, 665, 683, 685, 686, 692, 698, 703, 706, 708, 714
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Matthew Conroy)
Dimitri Zucker, Factorial Fact Frenzy (!), Combo Class Youtube video (2022).
EXAMPLE
The sum of the decimal digits of 5! is 1+2+0=3 and 3 divides 120, so 5 is not in the sequence.
The sum of the decimal digits of 432! is 3897 = (9)(433) and 3897 does not divide 432!, so 432 is in the sequence.
MATHEMATICA
Select[Range[1000], !Divisible[Factorial[#], Total[IntegerDigits[Factorial[#]]]] &], (* Tanya Khovanova, Jun 13 2021 *)
PROG
(Python)
from math import factorial
def sd(n): return sum(map(int, str(n)))
def ok(f): return f%sd(f) != 0
print([n for n in range(1, 715) if ok(factorial(n))]) # Michael S. Branicky, Jun 13 2021
(PARI) isA066419(n) = (Mod(n!, sumdigits(n!)) != 0) \\ Jianing Song, Aug 26 2024
CROSSREFS
Cf. A004152 (sum of digits of n!).
Sequence in context: A063463 A175026 A205192 * A245469 A069781 A337670
KEYWORD
base,easy,nonn
AUTHOR
Matthew Conroy, Dec 25 2001
STATUS
approved