login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069781
Numbers k such that gcd(d(k^3), d(k)) is not a power of 2.
6
432, 576, 648, 1600, 2000, 2160, 2880, 2916, 3024, 3136, 3240, 4032, 4536, 4752, 4800, 5000, 5488, 5616, 6000, 6336, 7128, 7344, 7488, 7744, 8208, 8424, 9408, 9792, 9936, 10125, 10800, 10816, 10944, 11016, 11200, 12312, 12528, 13248, 13392
OFFSET
1,1
COMMENTS
The complement of this sequence in the positive integers A000027 is A069782. - M. F. Hasler, Jan 18 2015
The numbers of the form 4*3^(7*m - 1), m >= 1, are terms. - Marius A. Burtea, Oct 18 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
log_2(gcd(A000005(n^3), A000005(n))) is nonintegral.
EXAMPLE
For n<100000, gcd[d(n^3),d[n]] = {5,7,10,14,20,28,40,80} which is obtained for n={20736,576,432,2880,54000,20160,2160,15120} respectively.
MATHEMATICA
f[x_] := GCD[DivisorSigma[0, x^3], DivisorSigma[0, x]] Do[s=f[n]; If[ !IntegerQ[Log[2, s]], Print[n]], {n, 1, 100000}]
Select[Range[14000], !IntegerQ[Log[2, GCD[DivisorSigma[0, #^3], DivisorSigma[ 0, #]]]]&] (* Harvey P. Dale, Mar 20 2018 *)
PROG
(PARI) is(n)=my(f=factor(n)[, 2], g=gcd(prod(i=1, #f, 3*f[i]+1), prod(i=1, #f, f[i]+1))); g!=1<<valuation(g, 2) \\ Charles R Greathouse IV, Oct 16 2015
(Magma) f:=func<n| Gcd(#Divisors(n^3), #Divisors(n))>; [k:k in [1..14000]| not IsIntegral(Log(2, f(k)))]; // Marius A. Burtea, Oct 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 08 2002
STATUS
approved