The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231231 Numbers n such that, in the prime factorization of n, the product of the exponents equals the sum of prime factors and exponents. 1
 432, 648, 1152, 4000, 5400, 8748, 9000, 12800, 12960, 13500, 17280, 19440, 21952, 25000, 48000, 48384, 50625, 60000, 78400, 87480, 100352, 114048, 150000, 189000, 202176, 263424, 303264, 303750, 304128, 340736, 356400, 367416, 368640, 370440, 374544, 384912 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If n = p_1^c_1 * p_2^c_2 * p_3^c_3 * ... * p_k^c_k, where c's are positive integers and p's are distinct primes, then product{j=1 to k}[c_j] = sum{j=1 to k}[p_j+c_j]. LINKS EXAMPLE 9000 = 3^2 * 2^3 * 5^3. Product of exponents is 2*3*3=18, sum of prime factors and exponents is 3+2+2+3+5+3=18, hence 9000 is in the sequence. MATHEMATICA t = {}; n = 1; While[Length[t] < 38, n++; f = FactorInteger[n]; sm = Total[Flatten[f]]; pr = Times @@ Transpose[f][[2]]; If[sm == pr, AppendTo[t, n]]]; t (* T. D. Noe, Nov 08 2013 *) peQ[n_]:=Module[{fi=FactorInteger[n]}, Times@@fi[[All, 2]]==Total[ Flatten[ fi]]]; Select[Range[400000], peQ] (* Harvey P. Dale, May 21 2019 *) CROSSREFS Cf. A054411, A054412, A071174, A071175, A122406, A231293. Sequence in context: A066419 A245469 A069781 * A179666 A203663 A250815 Adjacent sequences:  A231228 A231229 A231230 * A231232 A231233 A231234 KEYWORD nonn AUTHOR Alex Ratushnyak, Nov 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 10:42 EDT 2020. Contains 334748 sequences. (Running on oeis4.)