login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231228
Number of permutations of [n] with exactly one occurrence of one of the consecutive patterns 123, 1432, 2431, 3421.
2
0, 0, 0, 1, 9, 59, 358, 2235, 14658, 103270, 778451, 6315499, 54733657, 507655301, 5003179539, 52430810493, 580611272956, 6796733911852, 83658527086447, 1083027034959367, 14678725047527255, 208344799726820123, 3084495765476262875, 47646333262275943521
OFFSET
0,5
LINKS
FORMULA
a(n) ~ c * (2/Pi)^n * n! * n, where c = 3.08472832460941829086964816782... . - Vaclav Kotesovec, Aug 28 2014
EXAMPLE
a(3) = 1: 123.
a(4) = 9: 1243, 1342, 1432, 2134, 2341, 2431, 3124, 3421, 4123.
a(5) = 59: 12435, 12534, 13245, ..., 53124, 53421, 54123.
a(6) = 358: 124365, 125364, 125463, ..., 653124, 653421, 654123.
MAPLE
b:= proc(u, o, t) option remember;
`if`(t=7, 0, `if`(u+o=0, `if`(t in [4, 5, 6], 1, 0),
add(b(u+j-1, o-j, [2, 5, 2, 5, 7, 5][t]), j=1..o)+
add(b(u-j, o+j-1, [1, 3, 4, 4, 6, 7][t]), j=1..u)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t==7, 0, If[u+o==0, If[4 <= t <= 6, 1, 0],
Sum[b[u + j - 1, o - j, {2, 5, 2, 5, 7, 5}[[t]]], {j, 1, o}] +
Sum[b[u - j, o + j - 1, {1, 3, 4, 4, 6, 7}[[t]]], {j, 1, u}]]];
a[n_] := b[n, 0, 1];
a /@ Range[0, 25] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A231210.
Sequence in context: A174654 A027249 A026717 * A198847 A059356 A039929
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 05 2013
STATUS
approved