login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069778
q-factorial numbers 3!_q.
19
1, 6, 21, 52, 105, 186, 301, 456, 657, 910, 1221, 1596, 2041, 2562, 3165, 3856, 4641, 5526, 6517, 7620, 8841, 10186, 11661, 13272, 15025, 16926, 18981, 21196, 23577, 26130, 28861, 31776, 34881, 38182, 41685, 45396, 49321, 53466, 57837, 62440, 67281, 72366
OFFSET
0,2
COMMENTS
Number of proper n-colorings of the 4-cycle with one vertex color fixed (offset 2). - Michael Somos, Jul 19 2002
n such that x^3 + x^2 + x + n factors over the integers. - James R. Buddenhagen, Apr 19 2005
If Y is a 4-subset of an n-set X then, for n>=5, a(n-5) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals row sums of the Connell (A001614) sequence read as a triangle. - Gary W. Adamson, Sep 01 2008
Binomial transform of 1, 5, 10, 6, 0, 0, 0 (0 continued). - Philippe Deléham, Mar 17 2014
Digital root is A251780. - Peter M. Chema, Jul 11 2016
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
LINKS
M. Golafshan, M. Rigo, and M. Whiteland, Computing the k-binomial complexity of generalized Thue-Morse words, arXiv:2412.18425 [math.CO], 2024. See p. 29.
FORMULA
a(n) = (n + 1)*(n^2 + n + 1).
a(n) = (n+1)^3-2*T(n) where T(n) =n*(n+1)/2= A000217(n) is the n-th triangular number. - Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006
a(n) = n^8 mod (n^3+n), with offset 1..a(1)=1. - Gary Detlefs, May 02 2010
a(n) = 4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4), n>3. - Harvey P. Dale, Jul 11 2011
G.f.: (1+2*x+3*x^2)/(1-x)^4. - Harvey P. Dale, Jul 11 2011
For n>0 a(n) = Sum_{k=A000217(n-1)...A000217(n+1)} k. - J. M. Bergot, Feb 11 2015
E.g.f.: (1 + 5*x + 5*x^2 + x^3)*exp(x). - Ilya Gutkovskiy, Jul 11 2016
EXAMPLE
For 2-colorings only 1212 is proper so a(2-2)=1. The proper 3-colorings are: 1212,1313,1213,1312,1232,1323 so a(3-2)=6.
a(0) = 1*1 = 1;
a(1) = 1*1 + 5*1 = 6;
a(2) = 1*1 + 5*2 + 10*1 = 21;
a(3) = 1*1 + 5*3 + 10*3 + 6*1 = 52;
a(4) = 1*1 + 5*4 + 10*6 + 6*4 = 105; etc. - Philippe Deléham, Mar 17 2014
MAPLE
A069778 := proc(n)
(n+1)*(n^2+n+1) ;
end proc: # R. J. Mathar, Aug 24 2013
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 6, 21, 52}, 41] (* or *) Table[(n + 1) (n^2 + n + 1), {n, 0, 41}] (* Harvey P. Dale, Jul 11 2011 *)
Table[QFactorial[3, n], {n, 0, 41}] (* Arkadiusz Wesolowski, Oct 31 2012 *)
PROG
(PARI) a(n)=(n+1)*(n^2+n+1)
CROSSREFS
Cf. A069777, A069779, A218503, A056108 (first differences).
Cf. A001614. - Gary W. Adamson, Sep 01 2008
Cf. A226449. - Bruno Berselli, Jun 09 2013
Sequence in context: A244906 A276072 A135454 * A015644 A067680 A115052
KEYWORD
nonn,easy
AUTHOR
STATUS
approved